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Estimateur par calage
et technique de ratissage généralisé
dans les enquétes par sondage

) Jean-Claude DEVILLE, Insee
et Carl-Erick SARNDAL, Université de Montréal, Canada

Calibration Estimators and Generalized Raking Technique in Survey Sampling

Abstract. This paper is about estimation of the finite population total in the presence of

univariate or multivariate auxiliary information. Attention is focused on alternanve weighting
systems that reflect a given auxiliary information. There are two parts to the paper: (i) derivation of
a weighting system with the aid of a distance measure and a set of calibration equations; (ii) an
application to the case where the information consists of known marginal counts i a two- 01
multi-way table; this is called generalized raking.

The general regression estimator (GREG) was conceived with multivariate auxiliary information

in mind. It is ordinarily justified by a regression relationship between the study variable y and the

auxiliary vector x. But the GREG can be derived by a different route by focusing instead on the

weights. The sampling weight of the k:th observation is Jt;] , where m, is the inclusion

probability of k. We show that the weights implied by the GREG are as close as possible,

according toa given distance measure, to the ‘ft? while respecting side conditions called
calibration equations. These state that the sample sum of the weighted auxiliary variable values
must equal the known population total for that auxiliary variable. That is, the calibrated weights
must give perfect estimates when applied to each auxiliary variable. This consistency check on a
weighting system is required by many practitioners. The GREG uses the auxiliary information
cfﬁ.cicntly, but the weights are not always without reproach. Negative weights can occur; in some
applications such weights make no sense. It is natural to seek the root of the dissatisfaction in the
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underlying distance measure. Consequently, we allow alternative distance measures that satisfy
only a set of minimal requirements. Each distance measure leads, via the calibration equations, to a
weighting system and thereby to a new estimator. These form a family of ¢glibration estimarors.
We show that the GREG is-a first approximaton to all other members of the family; all of them are
asymptodcally equivalent to the GREG, and it is the already available variance estimator for the
GREG that we recommend to use for any member in the family. Numerical features of the weights
and ease of computation may become more than anything else the basis for choosing between the
estimators. We apply the theory to calibration on known marginals of a two-way frequency table.
Our family of distance measures then leads to a family of generalized raking procedures. Classical
raking ratio is one of these.Variance expressions and easily calculated variance estimators are given
for generalized raking estimators, and inference conditional on the estimated cell counts is among
the topics discussed.

KEY WORDS: Multvariate auxiliary information; Regression estimators; Raking.

1. Infroduction

Survey statisticians use auxiliary information in many ways to improve survey estimates. One
example is when the general regression estimator is used for the finite population total or mean. It
depends on a vector of auxiliary variables for which the populaton total is known. The calibration
gstirators derived in this paper are a family of estimators that appeal to a common base of auxiliary

information. A calibration estimator uses calibrated weights. These are as close as possible,

according to a given distance measure, to the original sampling design weights n:;' , while
respecting a set of constraints, _thc calibration equations. To every distance measure corresponds a
specific calibrated weighting and a calibration estimator.In Section 3, we define a family of
distance measures and derive the corresponding family of calibration esdmators. Their properties
are established in a series of results. Variance estimators for calibration estimators ar: given in

Section 4. An important application is calibration on known marginal counts in multi-way tables.
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Two-way tables are examined in Sections 6 to 9. The calculation of the cell weights, given one of
our distance measures, can be described as gengralized raking. Variance estimation for generalized

raking and conditional inference for two-way tables are important topics in Sections 7 to 9.

2. Deriving the general regression estimator by calibragon

Consider a finite population U = {1, ..., k, ..., N} from which a probability sample s (s £ U)

is drawn with a given sampling design, p(-). Thatis, p(s) is the probability that s is selected.
The inclusion probabilities &, =Pr(k € s) and 7wy, = Pr(k &£ € s) are assumed strictly
positive. Let y, be the value of the variable of interest, y, for the k:th population element, with

which is also associated an auxiliary vector value, Xy = (Xgy, -y Xgjo -0 XiJ )'. For the elements

k € s, we observe (¥, Xy). The population total of x, t, = Xy Xy, is assumed accurately

known. This knowledge may come from one or more sources: census data, administrative data

files, etc. If A (A ¢ U) is any set of population elements, X, is our shorthand for 2., , for

example, Xy, Means 2, . Vi -

The objective is to estimate the population total t, = 2u ¥y Extending an idea of Lemel (1976),

Deville (1988) used calibration on known populaton x-totals to modify the basic sampling design
weights, d, = 1/, that appear in the Horwitz-Thompson estimator, t;.,t =Y Y/ =2 diyk - A
new estimator, t;w =3 WY}, is sought, with weights w, that érc as close as possible, in an
average sense and for a given metric, to the d,, while respecting the calibration equation

T owpx, =t . 2.1)

Here, w,, would be a more appropriate notation for the sample dependent weights, but for brevity
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we write just wy. The idea of modifying the dy is found, in a different context, in Zieschang

(1986). If Ep(') denotes expectation with respect to the sampling design p(s), a measure of

average distance reminiscient of the chi-square statstic is

E (X (Wy - d)%/2d, ).
For more generality in this expression, we can let the k:th term have an individual, known positive

weight 1/q,, unrelated to dy, which gives the average distance

E (Z; (wy - d22dyqy ). 2.2)

The uniform weighting 1/q, = 1 is likely to dominate in applications, but unequal weights 1/g,
are sometimes motivated; see Example 1 below. To minimize (2.2) subject to (2.1) holding for

every possible sample s is equivalent to minimizing, for any particular s, the quantity

3, (wy - 4220,y = 5, d(widdy - D224

subject to the single constraint (2.1). Minimizaton leads to the calibrated weight

wy = d (1 + qx A, 2.3)
where the Lagrange multiplier X is determined from (2.1), thatis,

X =T (-t s (2.4)

assuming that the inverse of

T, = 2 dpQy XXy - (2.3)

exists. The resulting estimator of t, is
g = Ze Wik = Gt (- ) By, (2.6)

where t,, =Y d,x, cenotes the Horvitz-Thompson estimator for the x-vector, and
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B, = Ts"2 2 Xy, - Q2.7
is a weighted multiple regression coefficient estimator. Thus, Deville's (1988) calibration technigue
(a) provides an alternative derivation of the generalized regression estimator, see Cassel, Simdal
and Wretman {1976), Gourieroux (1981), Sarndal (1980), Isaki and Fuller (1982), Wright (1983)

and others, and (b) shows that it is constructive to view (2.6) as a linear weighting method with

sample dependent weights wy given by (2.3). Such a view was taken in S&rndal (1982), who

used the wy to create a variance estimator for tyreg (see Section 4 below), in Bethlehem and

Keller (1987), and in Lemaitre and Dufour (1987). The research question addressed in this paper is

whether useful alternative estimators will result by using generalized distance measures.

Example _1: Derivation of the ratio estimator. Take X, = X, a positive scalar. Then x X =
x\. Letus take qy = 1/x,. We obtain X = (Ty x /(s deXy) - 1 = t/65 - 1, whereby w, =
d(1+ qex M) =4 (1 + N) =d; tx/t;n, and from (2.6) t;“g =t t;.,,/t;,r, the ratio estimator. The

unequal weighting gy = 1/x; is essental for obtaining this result. O

3. A class of alternative distance measures

In (2.2), the distance between the original weight dy and the new weight wy was rather
arbirrarily taken as (w, - dy)2/2d,q,. It is natural to allow alternative distance measures sharing a
few basic features. For element k, consider a distance Gy (w,d) sucirthat: (1) forevery fixed d

>0, Gy (w,d) is nonnegative, differentiable with respect to w, strictly convex, defined on an

interval Dy(d) containing d, and such that G (d,d)=0; (2) gi(w,d) =9G(w,d)/iow is

continuous and maps Dy (d) onto an interval Im,(d) in a one-to-one fashion. It follows that
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g (w,d) is a strictly increasing function of w and g,(d.d) = 0. Average distance is now
measured by EP{Zs Gy (Wy.dy) }. To minimize this quantity subject to (2.1) holding for all s is
equivalent to seeking the wy that minimize, for any particular s, the sum 2 Gi(wy,dy) under
the single constraint (2.1). If X is a Lagrange multiplier, derivation gives

g (Wiod) - A =0. R R)

If a solution exists, our assumptions guarantee that it is unique. It can always be written as

Wy = dk Fk(x'k}\) s (3‘7)

for a certain functon Fy(u) such that Fi(0) = 1; F(0) = qx>0. Here, dFy(-) is the reciprocal
mapping of g ( -,dy). It maps Imy(d,) onto Dy(dy) in an increasing fashion.

In most of our applications, gy (w,d) = g(w/d)/qy, where g(-) is a function of the single

argument w/d, independent of k, continuous, strictly increasing, and such that g(1) =0. Then

g.(w,d) dependson k only through the multiplicative factor 1/qy . If Flu)= g-1(u) denotes the

inverse function of g(-), (3.2) becomes
- wy = dy Flgx N (3.22)

From (2.1), the calibration equations necessary to determine A= (A o ,)\j, s Ap) are

tx = Zs Wk Xk = ES dka(X;()\) Xk . (3.3)

It is convenient to define

0, =T d (Fg N - 1) (3.4)

whereby (3.3) can be written as
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O, = ty- . (3.5)

The right hand side is a known quantity for every sample s. In surmmary form, the procedure is:

1. Given the data from the realized sa_mplc s, and for-the chosen F (), solve (3.5) for A.

Iteration may be required, as discussed in Section 10.

2. Once X is determined, the resulting calibration estimator of Ly is obtained as

t;w = T Wiy = Zg d Fr(xpN) vy - (3.6) -

Applications of the procedure are given later. The distance function Gy(wy,dy) is chosen by the

statistician. Alternatively, he chooses the uniquely conespbnding function Fy(u) = Fk(x'kk).
Examples of the form g, (w,d) = g{w/d)/q, are shown in Table 1. Since 1/gy is a recurring
multplicative factor, the table shows q Gi(wy,dy) and qp gy (wy.dy) = glw/dy).

Table 1. Examples of distance functions Gy(wy,dy), with the associated gy (w,dy) and Fy(u).

Case G Gp(wi,dy) G B(Widy) = g(wi/dy) Fy(u) = F(qyu)
1 (we-dp22d, w/dy - 1 1 +qu
2 wy log(wi/dy) - wy +dg log(wi/dy) exp(gylt)
30 206w -Vdy? 2(1 - (/) 7?) (1 - gav2)?
4 -dy log(wi/dy) + wy - dy 1 - (wi/dy! (1- q)?
500 (wedd2wy {1-(wy/dy)2)/2 (1-2qu)12
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Wellknown distance measures are involved: Hellinger distance in Case 3, minimum engopy

distance in Case 4. In Cases 1, 3,4 and 5, Fy(u) is of the form (1 + o quu)!/@, with & = 1

s

-1/2, -1, -2, respectively; Case 2 is obtained when @ — 0. In Case 1, which yields the
regression estimator (2.6), the weights wy can be positve or negative; Cases 2105 guarantee

positive weights wy. Cases 1 and 2 always lead to a solution of (3.5);inCases 3 0 5, a
soiution is not guzranteed, but Result 1 below shows that the probability of a solution t;:nds to one.
In a given case, unrealistic weights w, may occur, although rareiy. Negative weights wy may
occur in Case 1; this may be unacceptable. Equally undesirable, Case 2 may yield extremely Iérgc

positive weights wy. The cases in Table 1 allow considerable flexibility, but there is reason to

consider further alternatives that restrict the values of Fy(u).

Case 6 In Case 2, the values of Fy(u) = exp(qyu) range in (0, o). To restrict the range,

specify constants L and U suchthat L<1<U, set A=U-L)/{(1-L)(U-1)} and define

E _ L({C-1) + U(1-L) exp(Aq,u)
{0 = (U-1) + (1-L) exp(Aq,u)

We have Fy(-00) = L; F(e0) =U; F(0) =1, F'k(O) = Q. The resulting wy satisfy L d, < wy

< U dy. The distance function G(wy,dy) in this case is, apart from a multiplicative constant,

; xL ; Ux
(x-L) log 1 + (U-x) log U1
with x=wy/d, . If L is large negative, and U large pcsitive, we are close to Case 1.If L=0

and U is large, we are close to Case 2. O
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Case 7. Case 1 can be sirnilarly restricted by specifying F(qu)=1+qu if (L-1)}/g <sus<
(U- /g, F)=Lif u<@-1)q and FL(w)=Uif v > (U - 1)/qy, for any suitable
constanis L and U. The weights w, will then satisfy L d, < w, < Ud,. The corresponding

distance function is as in Case 1 if L d, < w, < U d; and defined as infinity otherwise. A choice

L 2> 0 eliminates the possibility of negative weights. O

Example 2: The ratio estimator is obtained for any g, (w,d) of the form giw/d)q,, if x, =
x,,a positive scalar, and g = 1/x,, asin Example 1. Then Fy(x,\)=F(gxM) =F(\), a

constant. From (3.3), F(\} = tx/t;,{, so (3.6) gives the ratio estimator t;w = th;,t /t:m. O

Example 2 is rather exceptional. Generally, different Fy(u) yield different estimators.

However, Result 5 below states that all estimators (3.6), under mild conditions on the underlying

F,(u), are asymptotically equivalent to the regression estimator (2.6), generated by Fp(w) = 1+

quu. Thus, for medium to large samples, the choice of Fy(u) has only a modest impact on such

essential properties as the variance of the estimator. Computational convenience may then more

than anything else dictate the choice of Fy(u). We now derive several asymptotic results that are

needed later. The setup we use for asymptotics is essentially that of Fuller and Isaki (1981), Isaki
and Fuller (1982). Impcrtant features of the setup are the following. We consider a sequence of
finite populations and sampling designs indexed by n, where n is the sample size (for a fixed size
sampling design) or the expected sample size (for a random size sampling design). The finite

population size, N, tends to infinity with n, and we assume that

1. lim N-1t  exists;

2. Nl (£, -t —— 0 in design probability;
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3. ni2N-1(t, -t ) converges in distribution to the multinormal N(0, 3).

Here, (3) is to justify the use of the normal approximation in confidence intervals based on t;w .
Let XYy be shorthand for Eiliﬁ -y et Ay =Ty, -m Ty - Now, (1) to (3) imply that

AN2 ISy Byep /M) = 0 N2 V(te)

converges to the fixed matrix Y, and that

Nty - £) = O,(n-12).
In particular, under simple random sampling without replacement (SRS) with sampling fracton f

= n/N, (1) to (3) imply that

-1 'ON2¢ ¢
N1y xex, - N2t t,
converges to a fixed positive definite matrix, V,, and that

¥ = lim (1 -f) Vs.

We can view 2, as a matrix that describes an asymptotic effect of the sampling design in use.

From a practical point of view the assumptions mean that: (1) the components of t;n - t, are
considered small, and that quantities of the order of It - t, I2 are considered negligible; and
(2) t,. - t, follows approximately a normal distribution with covariance matrix n-1N2} .

-Before proving asymptotic properties of t,,,, we discuss the existence of a solution of (3.5).

Now, (3.4) defines a function of X\ on C=Ny .y {h:x A € Im(dy)}, a convex domain.

Assuming that C is an open neighbourhood of @, independently of n, we have:

Result 1. Equation (3.5) has a unique solution belonging to C, with probability tending td

one as n-— e, 0O

J.-C. Deville & C.-E. Sdrndal, Insee Méthodes n° 29-30-31




275

Result 2. Let )\s be the solution of (3.5), if one exists; otherwise, let A, be an arbitrary fixed

value. Then  tends to 0 in design probability, and A = O,(m-12). 0O

In order to obtain Results 3, 4, and 5 below, we add the assumptions

(i) max x I = M <oo, (i) max F(0)=M < oo,

where max is over n as well as over k.

Result 3. We have

}‘s = Tj (ts - {xn) + Op(n ). O

The proofs of Results 1, 2 and 3 are given in the Appcndi_x.

Result 4. The calibration estimator L:,w given by (3.6) is design consistent, and
N (i - ty) = Opn-12) . o
Proof. With F (0) = gy, we have
Fn) = 1+ qu+6,.(u), (3.7

where max 6,(u) = O(u?). If (3.5) has a solution, A, then

t:rw - t;m = T de il @ s + 68,0

50

N-! It;w - t;m| < NS, de @yl v 1) IR0} + Op(n 1),

where N-1{Z, dy i |y |11, 1} = Oy(1) and A = Op(n-12) by Result 2. The result follows,

e — e

since t:m is design consistent and t ;- t, = Oy(n-172). O
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Remark. Since tyw is the nearest estimator to tyr in a given sense, it can be expected to
inherit some of the properties of 1. By definition, t; is design unbiased. We expect to find

that ‘;w is asymptotically design unbiased (ADU). This property can be obtained, if attention is

paid to one detail: it is not certain that (3.5) has a solution. With a small probability, there is none,

and r;w is undefined. We therefore modify the estimator as follows: Use r;w if (3.5) hasa

solution; if not, use t (that 1s, set A, = 0). This gives an ADU estimator. Undefined estimators

occur in simple cases, too. The usual poststratfication estimator is undefined if there is one or
more zero poststratum counts. The regression estimator (2.6) is undefined if T is singular. O
Result 5. For any Fy(-) obeying our conditions, the estimator t;w given by (3.6) is
asymptotically equivalent to the regression estimator t;,eg givén by (2.6), in the sense that
N (Eyw - Eyres) = 00l .

As a consequence, the two estimators share the same asymptotic variance. O

Proof: From (3.6) and (3.7),

Nlty, = Nl + NI(t,- t;,,)' T_j T QX Yy + Op(n'l) + N1 2, dy 8. (x 8y
The first two terms of the r.h.s.equal N-1 t;reg, where L;.,eg is the regression estimator (2.6).
The last term was found in the proof of Result 4 to be OP(n'l). Therefore, nl/Z N-1 (t;w - t;reg) =

0p(n°}72) , with a zero asymptotic variance. O
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4. Variance and variance estimation

- Result 5 states that t;w is asymptotically equivalent to t;,reg, which is the special case of t;w

generated by F(u) =1+ qeu. Forany F, (u) satisfying our conditions, the asymptotic variance
(AV)of t,, isthus the same as that ¢f the regression estimator, namely,

AV(Gyy) = 34 Dyp (GENAE) . (@.1)

where Ay, = 7y, -, and E =y, - X, B, with B satisfying the normal equation

(Zu qxex) B TR | (42

Clearly, B minimizes the weighted least squares expression

~

The residuals E, cannot be used for variance estimation, since B is unknown. Let B, be an.

estimator. Two alternatives are given below. Sample-based residuals can then be calculated as

~

e =¥ - X Bs . (4.4)
The variance estimator that we advocate uses these residuals as follows:
V(i) = 224 ( Dy o/ )W (W g € ). : (4.5)
In (4.5), calibrated weights w, are given to the residuals. The advantage that these weights have

over the simple design weights d, is that (4.5) has atractive properties with respect to both the

sampling design and the underlying i'egression model, as Sdrmdal, Swensson and Wretman (1989)

show. These properties are design consistency and approximate model unbiasedness.

Now consider the calculation of fls in (4.4). Note that 85y, given by (4.3) is the unknown

P.Qpl_ﬂ_ation total of the fixed quantities qui . The calibrated weights estimator of this total is SS,,
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-~

=2 wquE2 , which is minimized by B, satisfying the sample-based normal equations

(y—'s qukxkxlk) ﬁsw = zs WiQe Xy Yy - (46)

An alternative is to take SS;y =2, qukEE to estimate S§y;. This leads o B s sSatisfying

(s deqixicxy) Boa = Z deqiXuy -
Either ﬁs = ﬁsw or the computationally slightly simpler ﬁs = ﬁsd may be used in (4.4) and

(4.5). The difference in the calculated value of {’(t;w) is negligible in most cases.

Example 3. Let us return to t;,ws ty {}m/fxn in Example 2. Under SRS, (4.5) yields

2
2e,

n-1

X, 2
Uy 1-f
Q(?yw) = ( SE—) i
5
where e, =y, - ﬁsxk with f%s = (2 Y/ xp) = fisw = I?Bsd . This is an often recommended

variance estimator for the rado estimator. Note that By, and By agree in this case. O

5. Implications for poststratification.

Posstratification is an important practice. To apply the preceding, let there be H population
groups (the poststrata). Let x, be composed of H-1 "zeroes” and a single "one", indicating the

group to which k belongs. Then t. = Xy X, = (Ny, ..., N, ..., Ng)', the vector of known
population group counts. With X = (Ory, ..\ Ap, -, Ag)', we get x, A =y, whenever k is in

group h, so x'k)\ dep=nds only on the group, not on the iabel k within the group. We assume
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g (w,d) = g(w/d), thatis, q, =1 forall k. The calibration equations (3.3) give Fk(x'k)\) =

FO\) = g10y) = Nhjﬁh, where I:Ih =Zsy, llrtk.’l:or any element k in group h, the weight is

wi =d, FOvg) = dy Ny/N,,
Let ys, = (Zsy, Yi/Tw) /I:Ih . From (3.6) we obtain the usual poststratified estimator,

~ H — ~
tyw = Zpey Ni Ysh = Lypos - (5.1)

This estimator obtains for any function g, (w,d) of the form g(w/d).

6. Calibration for a two-way tabie

The technique of this paper can be used to calibrate on the known marginal counts for a

frequency table in any number of dimensions. In the case of a two-way table with ¢ columns and
T rows, there are ¢ +r - 1 linearly independent components in the A-vector to be determined. For

a three-way table, the A-vector has r+c+f-2 components to be determined, where f is the
number of levels of the additional third factor, and so on.

For simplicity, we limit the discussion to two-way tables. With r rows and ¢ columns, there
are rxc cells. The typical population cell, Uy, contains Nj; elements; i=1,....1; j=1, .., ¢
so N= ZELJ- Nij, where 2.2, jmeans 2;1253:1. We distinguish two levels of calibration: (a) at
the higher level, calibfation is on the known cell counts Nij; this is complete poststratification; (b)
at the lower level, calibration is on known marginal counts, leading to a class of raking procedures;
this is incomplete poststratification. In the following, we assume gy =1 forall k, and distance

measures such that g (w,d; = g(w/d). This implies F,(u) = F(u) = g-l(u).

Case a: Calibrat:on on known population cell counts (complete poststratification). The result:
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of Secuon 5 apply directly, with H = rc groups. From (5.1), the calibrated weights are

wy = dy Ny/ I:Iij forall k incell ij, with IA\IU =1s;; I/my , so the calibration estimator is

typos = 224 Njj §5ij , (6.1

where §5ij = (Zsij yk/nk)/I:Iij is the m-weighted y-mean of the sample cell 5ij = Uij M s,

If all the Ny; are known, and none of the s;; are empty or extremely small, (6.1) exhaustst

available information and is the preferred estimator. But situations often arise where calibration at

the lower level is either necessary or preferred:

1. The population marginal counts Nj; are known, but the cell counts are not. The marginal

counts may come from different data files, for exampie, age group counts from one file,
professional group counts from another, but crossclassification counts are lacking. By necessity,

calibration is on the known marginals.

2. There are some zero or extremely small sampie cell counts. Then- t;pos is undefined or may be
unstzble. Calibration on the cell counts, although perhaps feasible, is abandoned in favor of the
more reliable calibration obtained from the known marginals. This is of particular interest when a
table has three or more dimensions.

3. The auxiliary information comes from an independent, large survey. Suppose this survey
provides precise marginal count esdmates, but modest precision for cell count estimates. For
example, the annual French survey on employment uses a sample of about 130,000 individuals.
With a samplie this large, excellent precision is obtained for estimated coun:s in socio-professional
categories, head-of-household age groups, and educational levels, but estimated cell counts for the
crossclassification of any two dimensions have modest precision. The marginal count estmates are
treated as true values, and are used for calibration, instead of the volatile cell count estimates.

4. Statified sampling in conjunction with poststratification. One wishes to preserve the
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advantages of the stratification (say, geographical strata) and at the same time benefit from
poststratfication on another dimension (say, known age group counts). Then the c=ll counts are
typically unknown, and part of the interest lies in estimating them.

Now, (1} to (4) are reasons to consider the following

Case b. Calibration on known marginals (incomplete poststratification). The considerable

literature on the subject starts with Deming and Stephan (1940). References to this development are

given later. We consider any function F(-) obeying the conditions in Section 3, and assume g,

=1 forall k. The x;-vector must be defined so that 2, x, captures (but does not go beyond)

the information used for calibration, which is now the vector of marginal counts. This implies that
X = (Sl'k’ aee y Sr-k' 8'“(' ey S_Ck)‘ s (62)
where §,; = 1if the element k isinrow i,and O otherwise; S_Jk =1 if k isin column j, and

O otherwise. Then, Ty X = Npp oo s Neyy Ny, o, Noo)', where N, =37, Ny, Nyj=
T, N Letting X =(ay, ..., &, by, ..., b.), wehave x X =a +b; whenever k belongs
to cell ij. Thatis, F(x'k)\) =F(a; + bj) depends on the cell, but not on the label within the cell.

With flij =2 i 1/my , the calibration equations (3.3) take the form

30 NyFa+b) =N, (=1,..,0 ; 63)
S &ij FQ@;+b)= Ny G=1,...,¢) . (6.4)
This syste:n must be solved for ay, ..., a, by, ..., b,, for the function F(-) chosen by the

statistician. Iterative solution is often required; see Secton 10. One equation is redundant, so we

fix one component, say, b, =0, and solve the system for i=1,...,1; j=1, ..., c-1. Note that
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a; + b; remains invariant to the eliminaton of one equation. Having solved for the a, and bj, we

calculate the cell effects F(a; +b;), the calibrated cell count estimates

Ny = Ny F(a; + b)), 6.5)
the calibrated weights
Wi = dk ﬁg/&lj s (6.6)

and finally the estimator obtained from (3.6), denoted . . is

tw = Zs Wi¥k = ZZi5 Ni Y855 = tymarg - (6.7)

If we compare with complete poststratification, the difference is that the known cell counts Nj; in
(6.1) are replaced in (6.7) by estimates, 1:1:3" If the information content is high in the marginals,

the N are excellent estimates that improve substantially on the naive estimates N...
1,] p y 1_[

In (6.5),. F(a; + bj) measures the effect of cell ij (factor one at level i, factor two at level j).
This effect can be given a group theoretical representation. Let F(a) =q ; F(b}-) = BJ- . Then if bJ-
= (), the cell effect reducesto F(a, + bj) = F(a;) = ;. Similarly, if a; =0, then F(a; + bj) = F(bj)
= [3j. Introduce ai*Bj as a symbolic notation for F(a; +. by). Then

og*B, = F(F1(oy) + FI(B)) = F(a; + by (6.8)
and the calibrated weight can be written as wy =4y ai*Bj .Itcan be shown that if F-! mapsD

onto IR, then ai*Bj defines a group on D, with unity as neutral element. Conversely, one can .

show thata groupon D with 1 as neutral element can be expressed on the form (6.8). This is
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true of Cases 1,2, and 6 in Section 3. When F-! maps D onto an interval I of R containing
0, as in Cases 3,4 and 5, then ai*Bj defines a "pseudo-grqup" in the following sc'nsc:. (i) o*p
is defined on the domain F-1(¢) + F1(B) € I, and when defined, then a*B =B*c, (ii) unity is
neutral element, thatis, a*1 = & ; (ili) @ has an inverse, F{-F-1(@)}, if -Fl(@)e I; (v)ifboth

(*B)*y and a*(B*y) are defined, then they are equal.

A compact restaternent of the weighting problem is then: If D isan interval containing 1, we

seek cell effects of the form ai*ﬁj (with $.=1) where * representsa group or 2 pseudo-group
on D, with 1 as neutral element (so that a*1 = ), such that

2?:1 NU ai*Bj = Ni-r (I =1,.., I') ) zri;l Nlj ai*ﬁj = N+_] (j = 1, vee 3 C)

Cases of particular interest are:

1. The linear case F(u) = 1 +u yields additive cell effects, ai*ﬁj =+ ﬁj -1=1+4a+b;,

which are not necessarily positive. The calibration equatons (6.3) and (6.4) that result from this

case were presented in Deming and Stephan (1940).

2. The exponential case F(u) =exp(u) gives positive, multiplicative cell effects, ai*Bj = aiBj

= exp(a;+b;). The solution to (6.3) and (6.4) in this case can be obtained by carrying out untii
convergence the classical raking ratio algorithm of Deming and Stephan (1940). (Practitioners

often stop it after two iterations.) However, as pointed out in Huang (1976), they suggested the

algorithm apparently thinking it converges to the solution for the linear case, for which they had
presented the equations. This was later noted by Deming (1943).

3. Other solutions have been suggested. Smith (1947) gave a method corresponding to our Case
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4, for which OLi’“Bj = aiﬁj/(ai + Bj - aiﬁj) =(1-3-b y1. To each function F(-) in Table 1
corresponds a cell effect representation ai*Bj . For Cases 3 and 5, they are, respectively,

a*B, = oB/(Vor, + VB, - Vau [3)2 . 0P = aiﬁj,(af.., 5}?; a?gf)-m‘

7. A parametrization in terms of additive finjte population effects

Calibration on known marginals is often almost as efficient as calibration on known population

cell counts. That is, the variance of t;,., is often just slightly greater than that of t . Itis

illustrative to go a conditional route to show this. Let us condition on the vector of cell count

~

estimates, N = (I::In, I:Tu, cees Nijs oees n) where N =Ls;: dk We need expressions for the

two estimators that will facilitate an analysis of their conditional bias and conditional variance.

We associate with t;,mg a parameterization of the finite population obtained by a two-way
additive effects ANOVA model saying that, for elements k in the populadon cell Uy, yy = A; +

B; + Ey, where the A; and B; are fixed unknown finite population parameters and E; isa

residual, With x, defined by (6.2) and B=(Ay, ..., A, B}, .., By), wehave x, B =A;+ B..
Since all gy = 1, (4.3) takes the form SSy = 2y EE , 50 the normal equations (4.2) are
5 Ny (A +B) = Zu v = Ny G=1,..,1), (7.1)

zr N‘J (A + B) = EU-@—_} Y = N+_'|;;:-j (] =1,..,C) (72)

where U, = u y Uy Uy u;l Uj; - In the following A, ... ’AF’ B,, ..., B, denote the

unique solution of (7.1) and (7.2) obtained after fixing arbitrarily a value forone of the r+c¢
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components of B; we take B, =0. Note that x,B = A, +B; isinvariant to the fixing of one
component. Here, Ay, ..., A, By, .. Bo,; and B, =0 define fixed additve effects particular to
the finite population at hand. The approximate unconditional variance of t;mmg is now given by
(4.1) with E, =y - ( A; +B;) when k isincell ij. (Toesdmate the variance, the unknown A;
and B j must first be estimated; see Section 9.) We now derive an expression for the error t;m,_,g
- 1, needed to establish the condidonal properties: Write Ey =L; + Ry, where Ly = ;j -(A+ B))
represents lack of additive model fit (or interaction), and Ry =y - -y_ij’ where }; = 205 Y/ Ny
The typical observation is then

y, = additive model prediction + lack of additive model fit + deviation from cell mean,

or, equivalently,

Yk = (Ai+Bj)+Lij+Rk’
for ke Uy i=1,..,nj=1..,c From (6.7) we now have
tymarg = Z24j Njj (Ai+Bj+L1y * Ry, (7.3)
where NYY is defined by (6.5), and
ﬁSij = (25 ij Rk/nk)/&ij » (7.4)

We need a matching expression for t, . Multiply (6.3)by A; and sum over i; multiply (6.4)

by B, and sum over j,» toobtain

Zz.l‘} N:: Ai = ZLI Ni+ Ai ' Ez'l,_] N;: ’j = EJC';I N+J BJ .

These two equations, together with (7.1), yield
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ty =2y ye= 2Ty Ny (A + B =ZX; Ni(A; + B). (7.5)
From (7.3) and (7.5), the ermor of tymeyg is then

tymarg -ty = 23y NjLy * 25 Nyj Reyy. (7.6)

For the complete poststratification estimator (6.1), the easily derived counterpart to (7.6) is
Lypos - by =225 Ny Ry 7.7

8. Conditional properties of t ., and t;pos

Conditional propertes for raking ratio estimators, especially for SRS, are examined, for

example, in Oh and Scheuren (1987) and other papers by the same authors. We start from (7.6)

~

and (7.7) and analyze f;,marg and ty,, conditionally on N= (I:IH, cees Nijy ees f:Irc)', where f\Iij

= Esij di.. The objective is to find the conditional bias (c-bias) and the conditional variance

(c-variance). They determine the unconditional variance through the relation expected c-variance

plus variance of the c-bias. The index C is used to indicate conditional mean and variance
operators, that is, Eq(-) = E('I IQI) and V() =V( [ IA\I). If t; is an estimator of ty, its c-bias is
BC(I;,) = E_.C(r;) -ty and its c-variance is Vc(t;) . Our conditional analysis is simple, since the
IQI:;" = IA\TiJ- F(a; + bj) in (7.6) are fixed, given I’:I This is l?ecause the a; and bj- are solutions to
(6.4) and (6.5), in which all quantities are fixed once the I:Iij have been fixed. From (7.6),

B(Gmarg) = 2245 N Lij + 224 NI Ec(Rsy)s VelGmarg) = Ve(EZi; Nif Rsjp) . (8.1)

The corresponding expressions for the complete poststratification estimator follow from (7.7):

BC(I;pos) =22 Ny Ec(ﬁw) ; Vc({,pos) = V(2L Ny ﬁSij) - (8.2)°
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The approximation I:I:: = Nj is justified in large samples, so then
B (tymarg) - Bcltypos) = ZZij Ni Ly (8.3)
VC(I'ymarg) - VC(T-ypos) = 0.
The two estimators differ mainly in regard to their c-bias. Now, t;.pos is c-unbiased if Ec(ﬁsij) =0
for all i,j, as for SRS. Under cerntain other designs, t;pos is approximately c-unbiased. In any

case, the c-bias of t;mwg contains 2.2 ; f\i‘: L;;, which is nonzero when there is interaction;
compare Oh and Scheuren (1987) in the special case SRS.

The unconditional variance is V(-) = EBc(") + VE(-), where E and V are with respect 10 the
distribution of N. Now, V(t;,m,g) will ordinarily exceed V(En,os), since the c-bias of the former
contains 2% ; IQI::’ L;; . But if this interaction term is near zero, then t.;m,g and t:,pos have

essentially the same unconditional variance. In practice, this is often the case.

9. Variance estimation for generalized raking

Although raking ratio has a long history, the variance of the resulting estimators have been
difficult to work out even approximately. For specific designs, Brackstone and Rao (1979,
Konijn (1981), Choudhry and Lee (1987) derive formulas for the variance arising for the classical
raking ratio algorithm (our exponential case) stopped affcr a few iteraton steps. Bankier (1986)
suggests an approach involving repeated linearization techniques. A fairly complex variance
estimator is proposed by Binder and Théberge (1988). In the work of Bethlehem and Keller
(1987), a variance estimator is implicit; although the formula is not given, it probably resembles the

one we get for the linear case.
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As pointed out, the variance of t;mrg is given by (4.1), which applies with E =y - ( A+ BJ-)
for any desigh and any function F(-). The Ai' and B; verify the normal equations (7.2) and

(7.3). The variance estimator is obtained from (4.5), replacing first the unknown A; and B ; by

estimates. These are derived from the sample-based normal equations (4.6). They take the form
TNy (Aj+ B =I5, weyy = SN ysy G=1,..,1),
z{i‘-—-l N:;' (A:l + B_]) = ES+J WrVe = zg___l N:j ysij 0 = 1, vee C).

These resemble the calibration equations (6.3) and (6.4), so the same computer routine can be

used to solve for ;3;1 ﬁj (after fixing éc = (). The resuiting sample-based residuals are

ex = Yx - (Aj + By 9.1)
With these e, the variance estimator \Af(r;mug) is easily calculated from (4.5). We can also write
€y = ]:1.] + ﬁk’ Wlth ]:'U = ;Sij - (:&1 + é)) and ﬁk =Yk~ ;Si_j for k incell 1_]

In the case of SRS, the expressions are easy to interpret. To condition on N is then equivalent

to conditioning on the sampie cell counts, n = (nyy, nyg,-.. , Dy, .. n, ), since I:Iij = f-In;;
under SRS with f=n/N. The weights are w = I:I;}J/nij forall k in Sij- From (4.5) and (5.1),

Vitymarg) = (W@0-1) (1-H TwieZ = V;+V,

where
2 2

ﬁ 5.
_ w2 M - Y2 i
Q’l = ;-I-_l? (1-f) Zzi‘j (ﬁij) o 02 = ;’-_11—(1 -0 z:'zi.j (ﬁi.i) n. ’

1j 1

with séij = Zsj; (k- ;sij)zlnij. Here, {’2 estimates the c-variance in (8.1), namely,
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- S
VC(/[\_Yma_rg) - zzi.j (ﬁll) (B_:J_ '-ﬁ;) Sl] 5

with Sizj = ZUij O - ?ij)z/(Nij-l). The component {71 estimates the variance of the c¢-bias in
(8.1), that is, VBC(t;marg) = V(22 I:J:;' L;j), where V is with respect to the distribution of n.
10. Computational aspecis

To use the calibration estimator (3.6) we must first solve (3.5) for A. Solution by Newton's

method is first discussed; then techniques for calibration on known marginals are examined.

1. Solution of (3,5). Let ¢ls (X)) =0 ¢ (XN)/IX. Start with Xy = 0. Subsequent iterative

values, A\,, v =1, 2, ... are obtained by

Dot = M+ {0, Oty - - 9, ). (10.1)
(Note: For cases where F-1 maps D onto an interval I of R, one must check that x; A\, really
belongs to I.For instance, if x, A, 2 sup I,itisa good idea toreplace Ay, by A, =X, +
8, (A -X\y) for some 6, < 1 such that )\'V +1 15 near the border of the set of permissible values.)

From (3.4), $,0)=0; ¢‘s (0) = T, . The first iteration gives X, =T, (t,- fm); subsequent

iterations, v =2, 3,... obey (10.1) until convergence. Now, X\, is the vector (2.4) that yields

the regression estimator (2.6). Thus (2.6) is a first approximation to (3.6); Result 5 shows
them to be asymptotically equivalent. If F(u) = 1 + u, the iteration stops after the first step.
2. Solution of (6.3) and (6.4). We apply (10.1) to calibration on two known marginals. The
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equations to solve are (6.3) and (6.4), and X = (a;, ..., b}, ...,b). Fix b, =0 throughout the

iteration. This eliminates the last row and the last column of ¢'5 (\). A square r+c-1 mamix

remains. Its elements, my;, are as follows, with F'(u) = dF(u)/du: m;;= ):ir=1 Ny F'(a_i+bj);

m‘['\'j,f‘f‘j = 2;:;1 Nl_] Fr(a1+bj)' mi,r+j = m!‘-i-j.l = NU F'(a""bj), i = 1’ I o J = 1, vee s C - 1, a_ll
other off-diagonal elements are zero. Start with hg=0. The elements a;, b; of the next value,

A1, are obtained by solving

3 Ny a+b) =Ny - Ny, (=1,..,1 T Ny(g+b)=Ng-Ny G=1,.., c-).

These are final equations if F(u) = 1 + u; for other F(u), iteration continues untl convergence.

3. Alternative solution of (6.3) and (6.4). The system may be solved by noting that each
equation (6.3) can be solved for a; assuming the b; are known, and conversely for (6.4). With
b fixed at O throughout, follow the algorithm:

1. Set bj =0; j=1...,¢c-1;

2. Obtain a set of a; by solving one by one the r equauons (6.3), with b, from the preceding step;
3. Obtain a set of b; by solving one by one the c-1 equations (6.4), with a; from the preceding step;
4. Repeat steps 2 and 3 until convergence.

The procedure requires no matrix inversion and can be shown to converge to the proper
solution, but slowly compared with Newton's method. Approximately 15 to 20 iterations may be

required in cases for which 3 to 5 would typically suffice for Newton's method, with time of

execution typically increased by a factor of 3 t04.

In the linear case, F(a;+b) = 1+ a;+b;, and (6.3) gives
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=My - Niy- 0 Ngb/Ny s (=1,..,1).
Equations of this form are wellknown from unbalanced two-way ANOVA. In the exponential case,

F(a+b;) = exp(a;+b;), and we get the raking ratio algorithm of Deming and Stephan (1940).

11. Concluding comments

Result 5 states that the calibration estimators obtained by different specifications of F(-) all
have the same asymptotic variance. If asymptotic variance is the criterion, the theory in this paper
does not designate one estirnator as superior to the others. Confirming theory, we found in

simulations with modest to fairly large samples that from the standpoint of variance alone, there is

little to choose between the estimators r;,ma,g corresponding to different F(-). Individual celis

weights I:T:j may change considerably from one specification F(-) to another, but there is little

effect on V(t;mm.g), which combines all cells. Readily observed features of the weights, such as
their range, may become the overriding factor in the choice of F(-). The weights must make good
sense to the user. For example, if certain cells are also domains of study, the negative weights that
can occur in the linear case F(u) =1 +u is not an appealing prospect. Equally undesirable are the
excessively large cell weights that can result in the exponential case F(u) = exp (u) corresponding
to classical raking ratio. Therefore, functions F(-) that give weights bounded from above and
below are attractive alternatives. Cases 6 and 7 are of this kind. They allow the practitioner to ry
several specifications of (L, U) and settle on one that gives suitable weights. On the other hand,
there is a slight chance that Cases 6 and 7 yield no solution. An extension of our calibration
weighting is to also include the reweighting for estimanon done in the presence of nonresponse.

The classical raking ratio seems promising in this regard; see Binder and Théberge {1987).
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APPENDIX
feof Results 1,2 an

1. Mathematical preliminaries
1.1. The function ¢ and its propertics

Let C,=n {X:x: € Im(dy)), where N isover k e Uy, the finite population associated

with the (expected) sample size n. The interior Cfl of C, isan open convex set containing 0 for

every n. Moreover, C*=n__, Cg is convex; we assumne that it is also open. Let E, and P,

denote expectation and probability, respectively, with respect to the sampling design indexed by

n. For e C* NTE {6, (\)] isawell defined continuously differentiable function. By our

assumptions, it converges to a fixed functon denoted ¢ . Convergence is uniform on every

compact set in C*. Note the properties

N1o (0)=0; ¢0)=0,
N1o.@)=NI1T,; ¢ (0)=T=lim Nt Zyx, %, .

| . . e . . . . .
Now, for every A, ¢ 1isapositive definite matrix because all F, are increasing functions. As

a consequence, ¢ is injective and maps C* onio an open neighbourhood of ¢ in RJ. let B

be a closed sphere with radius r contained in that neighbourhood, and let A be the compact set

¢1(B). The inverse function ¢! is defined on B, continuous, and continuously differennabie.

Then 1l ¢-1(x) !l is continuously differentiable and bounded on B. Let K =max, gl ( ool
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1.2. Properties of N-t _Q; o)

All functons N-1 ¢'s()\) are defined on C* and therefore on A. For a continuous  defined
on C*, let lyiy= suppeml yOOI for M compact in C*. By our general properties of

convergence we have forevery £>0 that P (IN1¢, -6l < €) — 1 when n increases.

Now let ¢, = N-1 ¢, for some function verifying 11, - ¢ i, <Br; I ¢y - ¢'ily SPK, with 0<
B < 1/2. The probability of this event tends to 1 as n increases. Let 1y =(1-B)r, let B; bethe
sphere llx# <r; in R%. Now, ¢, maps the frontier of A ontothecrown ry s lIxll <r(l+
B) and ¢,(A) is a bordered manifold homotopic to B. These notions are discussed in
Trenoguine (1987). A consequence is that ¢,(A) covers the sphere By, and, in other words, that

forevery x € By, the equation q;l()\) =x has a (unique) solution. Moreover, ¢1'1, defined

on B,, is a continuously differentiable funcgon. Since | ¢'1 -0'I<BK forevery A in C,

(9, 1)'(x) exists for every x € By, and |l ol < Tx K (1 - Pyt

2. Proofs of the three results

Result 1. First, N'l(i':\xﬂ - t,) =z belongs to By with a probability tending to 1. Secondly,

N-1 ¢, has an inverse function on B, with probability tending to 1. As (3.5) can be written
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Nl(ter - 1) = N1o, (N,
the cquatién thus has a unique solution with probability tending to one. D
Result 2. Let A\ = (N q:; y1(z) if z belongs to B,; otherwise, }\s is arbitrarily defined.

Since @, (0) =0, we have

e =0 = (N1, Y@ - N1 ¢, Yi(0)
and B U< 1z K (1 -B)L. This inequality holds with probability tending 10 one when n
increases. But z = Op(n'm), so there exists a constant K' suchthat P, (1zi <K' ni2) — 1.
Combining the two inequalities, P, (Il A, IISK K'(1-B)y!n12) — 1, which implies, by
definition, that A, =0,(n"1?). O

Result 3. Let 8, (u) =Fy(u)-1-qu . We assume that 8,(u) = O(u?) holds uniformly, which

is equivalent to our assumption that F;(O) is uniformly bounded. Thus, 6(u) = max ,(u) =

O@?). Otherwise, for any &> 0, there exists K'such that, forallk, | < & will imply that

B, (n) £ K"u?. We can write (3.5) as f -t = T Gy {.qu;c)\s +8,(x, Xg)}, and therefore
Ae- T2 (-t = T2 g dx®, (08,

For X, sufficiently small,

- To (L -t 1 € INTTHLEK" (N E dy lx 1B 12
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Here, Il (N1 T, = 0,(1), N-LE d; 1ix, 1P =0,(1), and, by Result 2, 1 X112 =0 (n"1).

Result 3 follows. O
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