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In the Gaussian form of Principal Component Analysis, one starts with a vector Y whose distribution 
is ),(p ΣµN . It is well known that the p principal components can be deduced from S. They are 

independent, with variances 021 ≥≥≥ pλλλ L . We study the restricted model, where : 
 

0121 >==>>>> + pqq λλλλλ LL  
 
An explicit expression for the maximum likelihood estimate (MLE) is given, its uniqueness is 
established and we give an explicit sequence relying only the data and converging to the unknown 
parameters. The maximization relies on differential geometry, which uses the simplifying action of the 
orthogonal group )p(SO .  
 
 

1.  Introduction and Main Theorem 
 
In this paper, we propose to study the behaviour of the M.L.E out of an i.i.d. sample of size 

)y,...,y(:n n1 , where each  iy  follows ),(p ΣµN , we assume that the eigenvalues )( iλ of  S satisfy : 
 
                                                     0121 >==>>>> + pqq λλλλλ LL                                               (1) 

 
We call this situation the restricted model. 
 
Naturally this restricted model has been studied in detail by many statisticians. We remark that part of 
the results obtained are available only through arguments which either involve delicate combinatorial 
arguments or lack sufficient details. See Luirhead [8] and Seber [10], for example. 
 
We provide here some improvements of formulations, proofs and results. 
 
Considering the year of publishing, the article Asymptotic theory for principal components (th. 2 p. 
130 in [1]) of Anderson is, nevertheless, outstanding. The same is true for Lawley [6]. 
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We prove in Theorem I, below, that (essentially), from a sample of  n i.i.d. iy  with ),(p ΣµN  as 
distribution, satisfying (1), we can find a unique ‘and precisely defined) M.L.E. of the true parameters. 
We also give an explic it sequence relying only on the data and converging to the unknown parameters. 
 
The subset U  of +M  ( +M denotes the set of symmetric and positive definite operators of  pR ) is 
defined by the fact that a typical element S of U has eigenvalues pii )( ≤≤1λ which can be ordered so 
that (1) holds. 
 
The data are ny,...,y1 , i.i.d. from ),(p ΣµN . We easily get the loglikelihood ),(Ln Σµ of 

T
1 )y,...,y( n , which is : 

)y(,y)S(),(Ln µµµ −Σ−−Σ−−Σ −− 11Tr) ln(det(S . 

 

.,. denotes the usual inner product of pR and we denote : ∑ =
−=

n

i iyn:y
1

1 , (the sample mean), and 

T
1

1 )yy()yy(n:S i
n

i i −−= ∑ =
− (the sample covariance). It is clear that the eigenvalues of S  are 

distinct and strictly positive (a.s), so we denote them (after ordering) : 021 >>>> psss L . 
 

Since 01 ≥−Σ− − )y(,y µµ , for each Σ , ),(Ln Σµ has a unique maximum : yˆ =µ . Therefore, we 

limit ourselves to finding the maximum of the function L , with : 
 

)S(:)L( 1Tr) ln(det(S −Σ−−=Σ , for U∈Σ  
 
Before stating the main theorem, it is important to give a hint on the proof : with the change of 
variables 1−Σ=Θ : , )(L:)(F 1−Θ=Θ , we obtain the strict concavity of F on M+. Using the action of  

)p(SO , we observe that V image of F , is an union of orbits. So we first find the maximum of F on 
any orbit O , then the maximum of the maxima. 
 
It is well-known that Σ  can be written :  
 

∑∑
+==

+=Σ
p

qj
jpj

q

j
j PP

11

λλ , 

where each jP  is an orthogonal projection 2
j

T
jj PPP == , of rank 1, such that 0='jjPP , )'jj( ≠ and 

)(P
j j

PRId=∑ . (This is the classical spectral decomposition of Σ , satisfying (1)). 

 
THEOREM. (I)  On U , L  attains a maximum at a unique point Σ̂ , where the corresponding 
spectral decomposition is :  

Qs
qp

Psˆ
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qk
kj

q

j
j 











−
+=Σ ∑∑

+== 11

1 , 

 

with ∑ +=
=

p

qj jPQ
1

. The jP are the same projections as the ones of the decomposition of Σ . 

 
(II)   Moreover, any maximizing sequence N∈Σ nn )(  in U , i.e. such that :  

)ˆ(L)(Llim nn Σ=Σ∞→ , converge to  Σ̂ . 
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2.  Classical Case 
 
It might be useful to recall the well-known result concerning the unrestricted case : n  i.i.d.  
observations p

iy R∈ are assumed to follow the Gaussian distribution ),(p ΣµN ; the likelihood is (up 
to multiplication by a constant) : 









−Σ−−Σ=Σ ∑

=

−
n

i
ii

/n )y()y()(),(L
1

12

2
1

expdet µµµ T  

 
The M.L.E. method finds a couple ),( Σµ maximizing nL , or, equivalently, ln nL . By setting the 
partial derivatives equal to zero, we get : 
 

                                                    ∑
=

==
n

i
iy

n
yˆ

1

1
µ  , and 

 

                                                    S
n

ˆ 1=Σ , with T

1

1
)yy()yy(

n
S i

n

i
i −−= ∑

=

. 

 
Of course, to establish also that this estimate is the maximum needs further arguments; each author 
gives a different proof. Good references are Anderson [2] (§3.2), or Seber [10] (§3.2). 
 
In this specific (classical) case, the theorem similar to the result above is :  
 
THEOREM.  Let ny,...,y1 , i.i.d., following ),(p ΣµN ; assume that the eigenvalues jλ of Σ  are 
distinct and strictly positive : 

021 >>>> pλλλ L ,      pR∈µ , 
 

the ( jλ ) and µ  being unknown. Then the M.L.E. of the ( jλ ) and µ  is : 

pk,sˆ
kk ≤≤= 1λ , and yˆ =µ , 

 
the ks are the eigenvalues of the sample covariance : 

T

1

1 )yy()yy(n:S j

n

j
j −−= ∑

=

− . 

 
In all this, we suppose, of course, pn > . 
 
 

3.  Principal component 
 
(From a practical point of view.) 
 
Let Y be a random vector in pR , with Σ== Y,)Y(E covµ , we suppose that Σ  in not degenerate. So  

we can find an orthogonal transformation of pR  (let us denote it U ), such that : 
 

),,(UU pλλ L1
T diag=Λ=Σ . 

(with 021 >≥≥≥ pλλλ L ).  
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The principal component are obtained from the original Y , using the linear transform TU , we get 

new variables 
















pU

U
M
1

, called the principal components, pp )U(V,,U(V,)U(V λλλ === L2211  

(supposing all iλ  distinct, 0cov =)U,U( ji , for ji ≠ ). 
 
For a concrete analysis, it might be useful to visualize (approximately) a sample of n realization 

ny,,y K1  in pR , getting scatter plots (e.g. on the two-dimensional space generated by the first two 
principal component). Clearly, the situation is more fruitful when the data are assumed to be a sample 
from the gaussian distribution ),(p ΣµN . 
 
 

4. Proof of the Theorem 
 
Befor beginning the proof of our theorem, it is important to introduce a change of variables :  
 

1−Σ=Θ :            { }UM ∈Θ∈Θ= −+ 1::V , 
 

and )tr()ln(det:)()( 1 Θ−Θ=Θ=Θ − SLF . 
 
This change of variables is convenient for the remainder of this paper. We shall establish that F  is 
strictly concave on +M ; this property will contribute to simplify the argumentation to come. 
 
Another useful tool will be the action by conjugation of the group )p(SO  on )p(L ; this conjugation 
is defined by : 
 

1−Σ→Σ UU),U( , with )p(U SO∈ and )p(L∈Σ . 
 

We recall that )p(SO denotes the special orthogonal group of pR , and  )p(L  denotes the set of all 

linear applications of pR . 
 
We will also use, later on, the set  SV , consisting in the operators of V commuting with S . 
 
Lemma 1.  F  is strictly concave on +M . 
 
Proof :  First, we give the expression of the first two derivatives of the function F . 
 
We observe that, for every X  tangent to +M  (thus symmetric), we get1 : 
 

{ } { }SXXX'F TrTr),( 1 −Θ=Θ − . 
 

 
 
 

                                                 
1 To establish this, we might use the formula :  [ ])tr(lnexp)det( Θ=Θ  
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Now, we turn to the proof that the function R→+M:F  is strictly concave. In fact, if 1X , 2X  

are symmetric (i.e. tangent to +M ), the same reasoning gives : 
 

{ }2
1

1
1

21 Tr))(( XXX,X''F −− ΘΘ−=Θ , 
 

( ( ) ( )R,EE''F ×∈Θ 2L , he set of bilinear forms on E ), so : 
 

( ){ } ( ){ } 0TrTr),)((
2212121 <ΘΘ−=Θ−=Θ −−− // XXXX''F  

 
for 0≠X . 
 
 
Lemma 2.  Let O  (contained in V ) be an orbit of the action of )p(SO  by conjugation. The critical 

points of the restriction of F  to O  necessarily belong to SVO ∩ . In particular, because O  is 
compact, the points where the restriction of F  to O  attains its maximum belong to SVO ∩ . 
Moreover, the corresponding eigenvalues are ordered in the opposite sense as those of S . 
 
 
4.1  Proof of lemma 2 
 
Let O  be an orbit of the action of )p(SO , VO ⊂ . The critical points of the restriction of L  to O  are 

necessarily in SUO ∩ . 
 
First, we identify the tangent space at O∈Θ  : it exactly consists in the communicators :  
 

[ ] ( )Θ−Θ=Θ AAA, , A  antisymmetric. 
  
This result is classical. 
 

We then notice that any critical point O∈Θ
~

 admits a simultaneous diagonalization with S . This is 
equivalent to commuting with S . 
 
For a critical point Θ

~  on O , the condition 0)()( >=Θ−ΘΘ ~AA~,'F  is equivalent to : 

{ } { } 0)(Tr)(Tr =Θ−=Θ−Θ−
~

ASSA
~

AA
~

S . 
 
Representing operators by theirs matrix in an (orthonormal) basis, where S  is diagonal, we find that 

0=Θ ij
~   )( ji ≠ , 

 
{ }[ ]0)(Tras 1 =Θ−ΘΘ− AA . 

 
So, for an adequate change of basis in pR , both operators S  and Θ

~  can each be reduced into a 
diagonal matrix, with strictly positive elements on the diagonal. 
 
The first matrix has as eigenvalues (when ordered) : 
 

021 >>>> psss L  
 



Insee-Méthodes : Actes des Journées de Méthodologie Statistique 2002 100 

The matrix associated to Θ
~ has eigenvalues : l

~
,,

~
θθ L1 , with multiplicities lk,,k L1  (of course 

pkk l =++ L1 ); we may suppose that the )( i
~
θ are chosen in increasing order (except for 

multiplicities). 
 
We shall prove that )(ΘF  Is maximum on O  when the )( is and the )( i

~
θ are monotonic in opposite 

senses. This is a direct consequence of a Theorem of Hardy, Littlewood and Polya [4] (page 261, 
Theorem 368) which states2 : 
 
Inequalities.  If piia ≤≤1)(  and piib ≤≤1)(  are given, with the exception of a permutation pG∈σ , then 

i
ba

p

i i σ∑ =1
 is maximum then the )( ia and )( ib  are monotonic in the same sense, and minimum in 

opposite sense. 
  
In our situation, )Tr()ln(det)( Θ−Θ=Θ

~
S

~~
F ; in the chosen basis, the first term is constant, while 

i

~s~S
p

i i σθ∑ =
=Θ

1
)Tr( is minimum, according to result above if the permutation σ is such that : 

 

pq
~~~~
θθθθ LL =<<<< +1210 . 

 
This is the result we were looking for. 
(Here, we observe that the maximum is attained for )!( qp −  different permutations.) 
 
Lemma 3.  The restriction of F to SV  attains its maximum at a unique point Θ

~ , the eigenvalues i
~
θ  

of which satisfy : 
 

1−= jj s
~
θ , )1( qj ≤≤     and    

∑ +=

−
=

p

qk k

j
s

qp~

1

θ , )( pjq ≤< . 

 
Proof of lemma 3 :  From lemma 2, the maximum of F  on an orbit O  is reached for any Θ

~ , the 
eigenvalues )( j

~
θ  of which are disposed in the inverse order as those of  S . 

 

As V∈Θ
~ , i.e. 0111 >>>>== +−− pqpqp

~~~~
θθθθ LL , we can choose an adequate parametrization of 

V , our goal being to maximise )(ΘF , for Θ  belonging to following open set D  of 1+qR , defined  
by :  

qppp xxx −− <<<< L10 . 
 

We already know that F  is strictly concave (lemma 2), as it is easily seen that the equation 
0)( =Θ''F  has a unique maximum in the open set D , this solution is, necessarily, the unique 

maximum M  in this domain. 
 
Making explicit the coordinates of this point M , we obtain :  
 

1−= ii sM , )1( qi ≤≤     and    
∑ +=

−
=

p

qk k

i
s

qp
M

1

, pjq ≤<  

 

                                                 
2 Our formulation tries to make the statement more explicit 
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Lemma 4.  Let C  be a finite dimensional convex set, and 
o

C  its relative interior. Let R→C:ϕ  a 

strictly convex function which attains a minimum at a point 
o
Cm ∈ , then there exists )(ma ϕ>  such 

that { }ax;Cx ≤∈ )(ϕ  is compact. 
 

Proof  If  
o

CB ⊂  is a compact ball centered at m , and 
o
BB \=S  , the corresponding sphere; ϕ  is 

continuous in 
o

C  and so attains a maximum on S : then, for ax,Bx >∉ )(ϕ holds. 
 
 
4.2   Proof of Part I 
 
If SVV \∈Θ , the restriction of F  to the orbit of )p(SO  containing Θ does not admit Θ  as a critical 
point (see lemma 2), so F  cannot reach its maximum at this point. Moreover, using lemma 2 again, 
there exists 'Θ  in the same orbit, also element of SV , such that )()( Θ<Θ F'F . 
 
Then, the points where the restriction of F  to V  attains its maximum are necessarily in SV  : they are 
also the points where the restriction of F  to SV  reaches its maximum. 
 
Using lemma3, we see that there is a unique element Θ

~ in SV  where the restriction of F  to SV  
attains its minimum. This element, characterized in lemma 3, is thus the only element of V  at which 
the restriction of F  to V  attains  its minimum. This element is completely characterized in lemma 3; 
the statement of Theorem (I) (giving the spectral decomposition of Θ

~ ) is only another way of writing 
the same facts. 
 
As above, expressing the result in terms of )( j,λΣ  gives theorem (I). 
 
 
4.3  Proof of Part II 
 

Let us denote by +
SM  the set { }Θ=Θ∈Θ + SS;M  : this set is an affine manifold 3 (closed in +M ). The 

affine manifold VM ∩+
S is not convex, but each of its connected components is. We denote by o

SV  

the connected component containing the maximum Θ̂ . 
 
According to lemma 4 above, there exists ))(( Θ<

~
Faa , such that : 

 
{ }aF;: S ≥Θ∈Θ )(oVK  

 
is a compact set. Let VK ⊂'  be the union of K under )p(SO . 'K is clearly a compact set (as image 
of K × )p(SO ) and { } 'aF;; KV ⊂≥Θ∈ΘΘ )( . 
 
The reason for this is that, if aF ≥Θ)( , F  attains, on the orbit of Θ , a maximum at a point o

S
~ V∈Θ , 

then a)()( ≥Θ≥Θ F
~

F , thus K∈Θ~ , so '~ K∈Θ . 
 
 
                                                 
3 We recall that such a manifold is nothing but an open set in an affine set. 
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Let { }N∈∈Θ n,n V  be a maximizing sequence; it is clear that 'n K∈Θ , for n large enough. This ends 
the proof. 
 
From this, we deduce directly the theorem (II). 
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