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Abstract

This paper deals with nonparametric estimation of variation of exact consumer sur-
plus with endogenous prices. The variation of exact consumer surplus is linked with the
demand function via a non linear differential equation and the demand is estimated by
nonparametric instrumental regression. We analyze two inverse problems: smoothing
the data set with endogenous variables and solving a differential equation depending on
this data set. We provide some nonparametric estimator, present results on consistency
and optimal choice of smoothing parameters, and compare the asymptotic properties
to some previous works.
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1 Introduction

In structural econometrics, interest parameters are often defined implicitly by a relation
derived from the economic context and depending on the law of distribution of the data set.
Such problems require to explicit the link between the parameter of interest and the law of
data set and can be considered as inverse problems. Depending on the regularity properties
of the relation to solve, they are either well-posed (ie there exists a unique stable solution)
or ill-posed.

This work analyzes two mixed inverse problems and is motivated by a particular eco-
nomic relation, the link between the variation of exact consumer surplus associated to some
price variation and the observed demand function. Such a framework was studied in par-
ticular in Hausman and Newey (1995). Their objective is to measure the impact on the
consumer welfare of a price change for one good. One way to proceed is to calculate the
variation of exact consumer surplus, which is a monetary way of measuring the change in
welfare. To do so, consider one consumer, define y his income, q the demand in good and
p1 the price of a unique good. Assume that there exists a price variation from p to p1.
The variation of exact consumer surplus for an income level y, denoted by Sy, represents
the cost to pay to the consumer so that his welfare does not change for a price change (see
Varian (1992)).
The link between the interest parameter Sy and the demand function q is given by the
following nonlinear relation:{

S′y (p) = −q(p, y − Sy (p))

Sy
(
p1
)

= 0
(1.1)

The demand function q is not known and can be estimated using some econometric
model. Consider (Q,P, Y ) a random vector defining demand, price and income, and a
sample (Qi, Yi, Pi)i=1,...,n of observations. The demand function q can be approximated by
the function g estimated by a nonparametric regression:{

Q = g (P, Y ) + U

E (U |P, Y ) = 0

In their paper, Hausman and Newey (1995) analyze gasoline consumption using data from
the U.S. Department of Energy. They estimate semiparametrically the demand function,
with a nonparametric estimation of g, and a parametric part including several exogenous
variables like the year of survey, the city state of the household. They assume that the
identification assumption E (U |P, Y ) = 0 is fulfilled.

The motivation for our work derives from the endogeneity of price in the analysis of
demand function. In this case, the identification condition E (U |P, Y ) = 0 is no more
satisfied and the conditional mean does not identify the structural demand relationship. To
identify our interest parameter, we introduce some random variableW , called an instrument,
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such that E (U |Y,W ) = 0. The underlying function g is then defined through a second
equation:

E (Q− g(P, Y ) |Y,W ) = 0 (1.2)

Solutions of this second linear problem have been extensively studied, in parametric as well
as in nonparametric settings. The analysis of endogenous regressors, and more generally
of simultaneity, has a great impact in structural econometrics. Since the earliest works of
Amemiya (1974) and Hansen (1982), extensions to nonparametric and semiparametric mod-
els have been considered. Identification and estimation of g have been the subject of many
recent economic studies (Darolles, Florens, and Renault (2002), Newey and Powell (2003),
Hall and Horowitz (2005), Gagliardini and Scaillet (2007), Blundell and Horowitz (????),
Blundell, Chen, and Kristensen (2007) to name but a few). In particular, the application
to Gasoline demand is studied in Blundell, Horowitz, and Parey (2008). In what follows,
we use Hall and Horowitz (2005) methodology to estimate g.

Our purpose in this work is to mix both problems (1.1) and (1.2) in a nonparametric
setting. We plug some nonparametric instrumental regression estimator into the differential
equation and study the asymptotic properties of the associated estimated solution. We apply
our procedure to the gasoline consumption database used in Hausman and Newey (1995).

The paper proceeds in the following way. In the next section, we set the notations, the
main equations to solve and the link with inverse problems theory. We then present our
nonparametric estimator and recall the theoretical properties of each inverse problem. In
section 4, we study the asymptotic behavior of our estimator.

2 Model Specification.

In this section, we set the notations and link our model with inverse problems theory.

2.1 The linear equation model.

The objective of this part is to set the econometric model defining the demand function
q. We follow the modelization of Hall and Horowitz (2005). Consider (Q,P, Y,W,U) a
random vector with all scalar random variables (to fit with the empirical application). We
assume that P , Y and W are supported on [0; 1]1. Let (Qi, Pi, Yi,Wi, Ui), for i ≥ 1, be
independent and identically distributed as (Q,P, Y,W,U). P and Y are endogenous and
exogenous explanatory variables, respectively. Data (Qi, Pi, Yi,Wi), for 1 ≤ i ≤ n, are
observed.

Let fPYW denote the density distribution of (P, Y,W ), and fY the density of Y . Fol-
lowing Hall and Horowitz (2005) notations, we define for each y ∈ [0, 1] ty(p1, p2) =

1This assumption is not very restrictive since we study solutions of differential equations that are defined

locally
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∫
fPYW (p1, y, w)fPYW (p2, y, w)dw and the operator Ty on L2[0, 1] by (Tyψ)(p, y) =

∫
ty(ξ, p)ψ(ξ, y)dξ.

The solution g of equation (1.2) satisfies:

Tyg(p, y) = fY (y)EW |Y {E(Q|Y = y,W )fPYW (p, y,W )|Y = y} (2.1)

where EW |Y denotes the expectation operator with respect to the distribution of W con-
ditional on Y . Then, for each y for which T−1

y exists, it may be proved that g(p, y) =
fY (y)EW |Y {E(Q|Y = y,W )(T−1

y fPYW )(p, y,W )|Y = y}.

2.2 The nonlinear equation model.

Our interest functional parameter Sy is solution of the differential equation (1.1) depending
on m, which can be rewritten:{

S′y (p) = −g(p, y − Sy (p))

Sy
(
p1
)

= 0
(2.2)

or equivalently:

Sy(p) =
∫ p1

p
g(t, y − Sy(t))dt (2.3)

The function Sy is depending on g depending itself on the law of distribution of (Q,P, Y,W ).
These two problems (2.1) and (2.3) can be considered as particular cases of inverses prob-
lems.

2.3 Link with inverse problems theory

Studying our interest parameter Sy is equivalent to solving both inverse problems (2.1) and
(2.3).

Let start with the relation (2.3). The function S is defined by an implicit nonlinear
relation (there is no restrictive assumption on the form of the function g). Denote by Ay

the operator defined by Ay(g, S) = S
′
y + g(., y−Sy). Solving (2.3) is equivalent to inverting

the operator Ay under the initial condition Sy(p1) = 0. Under regularity assumptions on
g, following Vanhems (2006), there exists a unique solution: Sy(p) = Φy[g](p), where Φy is
continuous with respect to g. This nonlinear inverse problem is well-posed and defines a
unique stable solution.

The function g itself is solution of a second linear problem (2.1). As recalled in intro-
duction, this model is the foundation of many economic studies. Solving equation (2.1)
is equivalent to trying to invert the operator Ty. Even when the probability distribution
of (P, Y,W ) is known, the calculation of a solution g from equation (2.1) is an ill-posed
inverse problem. However fPYW is unknown in general and has to be estimated from an
iid sample of (P, Y,W ). Two steps are necessary in order to obtain an estimator of g. The
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first step is to stabilize equation (2.1), the second step is to solve the stabilized equation
where Ty is replaced by its estimator. Under regularity assumptions on the function g and
the operator Ty, there exists a unique solution g (see Hall and Horowitz (2005) or Johannes,
Van Bellegem, and Vanhems (2007) for a general overview).

Remark 2.1. The best methodology would have been to try and solve both problems in
one step and invert one operator instead of two. Contrary to the operator Ay which is
deterministic, Ty also depends on the law of data set and has to be estimated. Therefore,
it turns out to be impossible to write our model into a single inverse problem to solve. We
use a methodology in two steps to study our interest parameter Sy.

In the next section, we recall the estimation procedure and theoretical properties of both
functions g and Sy separately, before mixing both inverse problems.

3 Estimation and identification

In this section, we present the nonparametric methodology used as well as the issues of
identification and overidentification for both inverse problems separately. We briefly recall
the results in Hall and Horowitz (2005) and Vanhems (2006) in order to prove the asymp-
totic properties of the final estimated functional parameter Sy.

3.1 The linear inverse problem

We first consider the nonparametric instrumental regression defined in equation (2.1). It is
a Fredholm equation of the first kind and generates an ill-posed inverse problem. For the
purpose of estimation, we need to replace the inverse of Ty by a regularized version. Indeed,
it is well-known that the ill-posedness of this equation implies that a consistent estimator
of g is not found by a simple inversion of the estimated operator T̂y. A modification of the
inversion is always necessary and in what follows, we consider the Tikhonov regularization
and replace T̂−1

y by (T̂y + aI)−1 = T̂+
y where I is the identity operator and a > 0.

3.1.1 Estimation

Consider K a kernel function of one dimension, centered and separable, h > 0 the bandwidth
parameter and Kh(u) = (1/h)K(u/h).2 To construct an estimator of g(p, y), let hp, hy > 0

2 Note that we could have introduced some generalized kernel function to overcome edge effects, as in

Hall and Horowitz (2005). It is not necessary in our context since we intent to estimate a local solution Sy
of the differential equation in the neighborhood of the initial condition.
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two bandwidth parameters and define:

f̂PYW (p, y, w) =
1
n

n∑
i=1

Khp(p− Pi)Khy(y − Yi)Khp(w −Wi),

f̂
(−i)
PYW (p, y, w) =

1
(n− 1)

n∑
j=1,j 6=i

Khp(p− Pi)Khy(y − Yi)Khp(w −Wi),

t̂y(p1, p2) =
∫
f̂PYW (p1, y, w)f̂PYW (p2, y, w)dw,

(T̂yψ)(p, y, w) =
∫
t̂y(ξ, p)ψ(ξ, y, w)dξ.

The nonparametric estimator of g(p, y) is defined by:

ĝ(p, y) =
1
n

n∑
i=1

(T̂+
y f̂

(−i)
PYW )(p, y,Wi)QiKhy(y − Yi). (3.1)

3.1.2 Theoretical properties

In order to derive rates of convergence for Hall and Horowitz (2005) estimator, it is necessary
to impose regularity conditions on the operator Ty. Assume that for each y ∈ [0, 1], Ty is a
linear compact operator and note {φy1, φy2, ...} the orthonormalized sequence of eigenvectors
and λy1 ≥ λy2 ≥ ... > 0 the respective eigenvalues of Ty. Assume that {φyj} forms an
orthonormal basis on L2[0, 1] and consider the following decompositions on this orthonormal
basis: 

ty(p1, p2) =
∑∞

j=1 λyjφyj(p1)φyj(p2),

fPYW (p, y, w) =
∑∞

j=1

∑∞
k=1 dyjkφyj(p)φyk(w),

g(p, y) =
∑∞

j=1 byjφyj(p).

(3.2)

Under regularity conditions on the density fPYW and the kernel K (fPYW has r continuous
derivatives and K is of order r), on the function g(p, y), and on the rate of decrease of
the coefficients byj , λyj and dyjk depending on constants α and β, it is proved that ĝ(p, y)

converges to g(p, y) in mean square at the rate n
−τ 2β−1

2β+α with τ = 2r
2r+1 . In particular,

the constants α and β are defined such that, for all j, |byj | ≤ Cj−β, j−α ≤ Cλyj and∑
k≥1 |dyjk| ≤ Cj−α/2, C > 0, uniformly in y ∈ [0, 1].

3.2 The nonlinear inverse problem

Consider now the second inverse problem defined by equation (2.3).
The function Ŝy(p) is defined as solution of the estimated system:{

Ŝ′y (p) = −ĝ(p, y − Ŝy (p))

Ŝy
(
p1
)

= 0
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3.2.1 Estimation

The estimated solution Ŝy is approximated using numerical implementation. Various clas-
sical algorithms can be used to calculate a solution, like Euler-Cauchy algorithm, Heun’s
method, Runge Kutta method. Hausman and Newey (1995) use a Buerlisch-Stoer algo-
rithm from Numerical recipes. Let briefly recall the general methodology. Consider a grid
of equidistant points p1, ..., pn where pi+1 = pi + h and p1 = p1. The differential equation
(2.2) is transformed into a discretized version:{

Ŝy(i+1) = Ŝyi − hĝh(pi, y − Ŝyi)
Ŝy0 = 0.

(3.3)

Where ĝh is an approximation of ĝ. In the particular case of Euler algorithm, ĝh = ĝ. As
recalled in Vanhems (2006), numerical approximation of Ŝy does not impact the theoretical
properties of the estimator since they have a higher speed of convergence than nonparametric
estimation methods.

3.2.2 Theoretical properties

It has been proved (see Vanhems (2006)) that under some regularity assumptions on g,
following Cauchy-Lipschitz theorem, for each y ∈ [0, 1], there exists a unique solution Sy

defined in a neighborhood of the initial condition (p1, 0). Again, under regularity conditions
on ĝ, following Cauchy-Lipschitz theorem, there exists a unique solution Ŝy defined on a
neighborhood of the initial condition (p1, 0). The stability of the inverse problem (2.3)
is fulfilled if the estimator Ŝy is consistent, that is if ∂

∂e2
ĝ (i.e. the derivative of ĝ with

respect to the second variable) converges uniformly to ∂
∂e2
g. Under the condition that

‖ ∂
∂e2
ĝ − ∂

∂e2
g‖∞ → 0, the estimator Ŝy converges almost surely to Sy and the nonlinear

inverse problem is well-posed. (see Vanhems (2006) for more details). In order to derive rates
of convergence, we need to explicit the link between the solution Sy and the function g. The
main issue of this differential inverse problem is its nonlinearity. The following preliminary
result transforms the nonlinear equation into a linear problem. The methodology used is
closely related to functional delta method and close to result used in Hausman and Newey
(1995) and Vanhems (2006). Denote I = [p1− ε1, p

1 + ε1], for ε1 > 0 a closed neighborhood
of p1 and D = {(p, y); p ∈ I, |y| ≤ ε2}, for ε2 > 0.

Proposition 3.1. : (i) Under the assumption of consistency of Ŝy to Sy, it can be proved
that:

∀p ∈ I, Ŝy (p)−Sy (p) = −
∫ p

p1

(
(ĝ − g) (t, y − Sy(t)).e

[∫ t
p

∂
∂e2

g(u,y−Sy(u))du
])

dt+R1,n(p, y)

where R1,n(p) = oP (‖ĝ − g‖∞) and ‖ĝ − g‖∞ = sup
(a,b)∈D

|ĝ(a, b)− g(a, b)| .
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(ii) Assume moreover that g and K are at least continuously differentiable of order 2
(ie r ≥ 2), then the previous decomposition can be transformed:

∀p ∈ I, Ŝy (p)−Sy (p) = −
∫ p

p1

(
(ĝ − g) (t, y − Sy(t)).e

[∫ t
p

∂
∂e2

g(u,y−Sy(u))du
])

dt+R2,n(p, y)

where R2,n(p) = OP

(
‖ĝ − g‖2

)
and ‖ĝ − g‖2 =

∫ ∫
1D (ĝ − g)2 (a, b) dadb

Introducing this expansion enables us to transform the nonlinear problem into a linear
one, up to a residual term. Hence the rate of convergence of Ŝy(p) towards Sy(p) can be
deduced from both terms.

• the linear part. The rate of convergence of the estimated solution of the differential
equation (2.2) is expected to be greater than the rate of convergence of the estimator
of the function g since there is a gain in regularity. Moreover, we also expect a gain
in dimension since we transform a function of two arguments into a function of one
argument.

• the residual term, which is the counterpart in the Taylor expansion. This term con-
verges to zero by definition and we will neglect it in what follows. Rather we obtain
an approximation rate up to this remainder term, controlled in probability.

4 Asymptotic behavior of the estimated solution

In this section, we aim at giving the asymptotic behavior of the solution of the differential
equation obtained after estimating the regression function observed in an endogenous set-
ting. Note first that all the asymptotic results will be given using the L2 norm which will
be written ‖.‖. The different other norms will be clearly specified.

4.1 Assumptions

Here are the assumptions required for the consistency and mean square convergence. In par-
ticular we provide rates of decay for the generalized fourier coefficients defined in equations
(3.2). We also introduce the following decomposition:

my(p, t) = 1[p1,p](t).e
[∫ t
p

∂
∂e2

g(u,y−Sy(u))du
]

=
∞∑
j=1

∞∑
k=1

cyjkφyj(p)φyk(t)

We then make the following assumptions, mostly adapted from Hall and Horowitz (2005)
and Vanhems (2006).
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• [A1] The data (Qi, Pi, Yi,Wi) are independent and identically distributed as (Q,P, Y,W ),
where P, Y,W are supported on [0, 1].

• [A2] The distribution of (P, Y,W ) has a density fPYW with r ≥ 2 derivatives, each
derivative bounded in absolute value by C > 0, uniformly in p and y. The functions
E(Q2|Y = y,W = w) and E(Q2|P = p, Y = y,W = w) are bounded uniformly by C.

• [A3] The constants α, β, ν satisfy β > 0, ν > 0, β + ν > 1/2, α > 1 − 2ν, and
(β + ν) − 1/2 ≤ α < 2(β + ν). Moreover, |byj | ≤ Cj−β, j−α ≤ Cλyj ,

∑
k≥1 |dyjk| ≤

Cj−α/2 and
∑

k≥1 |cyjk| ≤ Cj−ν uniformly in y, for all j ≥ 1.

• [A4] The parameters a, hp, hy satisfy a � n−ατ/(2β+α), hp � n−γ , hy � n−1/(2r+1) as
n goes to infinity, where τ = 2r/(2r + 1).

• [A5] The kernel function K is a bounded and Lebesgue integrable function defined
on [0, 1].

∫
K(u)du = 1 and K is of order r ≥ 2. Moreover, K is continuously

differentiable of order r with derivatives in L2([0, 1]).

• [A6] For each y ∈ [0, 1], the function φyj form an orthonormal basis for L2[0, 1] and
suppsupymaxj |φyj(p)| <∞.

• [A7] supp,y| ∂∂e2 ĝ(p, y)− ∂
∂e2
g(p, y)| converges in probability to 0.

Remark on assumption [A3] that allows to control the regularity of Ty, g and my.

4.2 Consistency

Proposition 4.1. Under assumptions [A1] − [A7], our estimator Ŝy(p) is consistent and
converges in probability to Sy(p).

Then we can apply the result of Proposition 3.1 and write:

Ŝy (p)− Sy (p) = −
∫

(ĝ − g) (t, y − Sy(t)).my(p, t)dt+R2,n(p, y)

= I(p, y) +R2,n(p, y)

4.3 Asymptotic mean square properties

Theorem 4.2. Consider assumptions [A1]− [A7] and the following property:

supy∈[0,1]

∫
E{I(p, y)}2dp ≤ supy∈[0,1]

∫
E{
∫

(ĝ − g)(t, y)my(p, t)dt}2dp (4.1)

Then, we can prove that:

supy∈[0,1]E(‖I(., y)‖2) = O(n−τ
2(β+ν)−1

2β+α ) (4.2)
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Remark 4.1. • Note that the rate of convergence depends on the parameter ν which
can be interpreted as the regularity induced by solving the differential equation. It is
faster than n

−τ 2β−1
2β+α , which is the rate obtained by Hall and Horowitz (2005).

• The condition (4.1) is quite natural in economics, it means that we neglect the com-
pensated income in the surplus equation.

A Proofs

Proof of Proposition 3.1.

Proof. This proof is directly taken from Vanhems (2006). Under the assumptions of consis-
tency, there exists a unique solution to (2.2) Sy(p) = Φy [g] (p) . The objective is to try and
characterize the functional Φy that is the exact dependence between Sy and m. To prove
this result, it is not necessary to impose the strong assumptions required later in the paper.
Indeed, consider the operator Ay defined on the following spaces:

Ay :

{
C1(D)× C1

b,0(I)→ C(I)

(u, v) 7→ Ay(u, v)

where C1(D) = {u ∈ C(D) and continuously differentiable} and

C1
ε2,0(I) =

{
v ∈ Cb,0(I), continuously differentiable and

∥∥v′∥∥∞ < ε2/ε1

}
where D = {(u, v) ; |x| ≤ ε1, |y| ≤ ε2} .(

C1(D), ‖.‖∞
)

and (C(I), ‖.‖∞) are Banach spaces. Moreover we define the following
norm:

‖.‖
′

∞ = max
(
‖v‖∞ ,

∥∥v′∥∥∞)
on C1

b,0(I). We can easily see that
(
C1
b,0(I), ‖.‖

′

∞

)
is a Banach space. As a matter of fact,

to prove it, we have to use the uniform convergence of functions and its application to
differentiability. The use of such a norm allows us to have the continuity and linearity of
the following function:

D :


(
C1
b,0(I), ‖.‖

′

∞

)
→ (C(I), ‖.‖∞)

y 7−→ y′

So, we have: ∀x ∈ I, Ay(u, v)(x) = v′(x) + u(x, y − v(x)) . Define an open subset O of
C1(D)× C1

b,0(I) and (g, Sy) ∈ O . Ay is continuous on O (it is a sum of continuous appli-
cations) and Ay(g, Sy) = 0. Let us check the hypothesis of the implicit function theorem.
Ay is in fact continuously differentiable (thanks to the same argument) so we can take its
derivative with the second variable d2Ay(g, Sy). Moreover, we have:
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∀h ∈ C1
b,0(I),∀p ∈ I, d2Ay(g, Sy)(h)(p) = h′(p) +

∂

∂e2
g(p, y − Sy(p)).h(p)

We have to prove that d2Ay(g, Sy) is a bijection. Let us show first the surjectivity:

∀v ∈ C(I), ∃?h ∈ C1
b,0(I);∀p ∈ I, h′(p) +

∂

∂e2
g(p, y − Sy(p)).h(x) = v(p)

This is a linear differential equation, so we can solve it and find that:

∀p ∈ I, h(p) = −
∫ p

p1

(
v(s).e

[∫ p
s

∂
∂e2

g(t,y−Sy(t))dt
])

ds

Therefore, d2Ay(g, y − Sy) is surjective. Let us now demonstrate the injectivity, that is

Ker (d2Ay(g, y − Sy)) = {0}

We are going to solve d2Ay(g, y − Sy)h = 0, h ∈ C1
b,0(I) . We find again a linear differential

equation we can solve and find:

∀p ∈ I, h(p) = ce
−

∫ p
p1

∂
∂e2

g(t,y−Sy(t))dt and h(p1) = 0

Therefore, we get c = 0. Thus, we have demonstrated that d2Ay(g, Sy) is bijective. Let
us now demonstrate the bi-continuity of d2Ay(g, Sy). In the usual implicit function theorem,
this assumption is not required, but here we consider infinite dimension spaces that is why
we need a more general theorem with further assumptions to satisfy. The continuity of
d2Ay(g, Sy) has already been proved since Ay is continuously differentiable.

The continuity of the reversible function is given by an application of Baire Theorem:
if an application is linear continuous and bijective on two Banach spaces, the reversible
application is continuous.

Therefore, we can apply the implicit function theorem: ∃U an open subset around g

and V an open subset around Sy such as:

∀u ∈ U,Ay(u, v) = 0 has a unique solution in V

Let us note: v = Φy [u] this unique solution for u ∈ U .
Now we are going to differentiate the relation: Ay(u,Φ [u]) = 0,∀u ∈ U and apply it in

(g, Sy = Φy [g]). Let us first differentiate Ay: ∀h ∈ C1(D)× C1
b,0(I) ,

dAy(g, Sy)(h)(p) = d1Ay(g, Sy)dg(h)(p) + d2Ay(g, Sy)dSy(h)(p)

= dg(h)(p, y − Sy(p)) + (dSy(h))′ (p) +
∂

∂e2
g(p, y − Sy(p))dS(h)(p)
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The differential of Ay leads to a linear differential equation in dSy(h) that we can solve.
Now we apply it with dg(h) = ĝ − g and dSy(h) = dΦy [g] (ĝ − g) in order to find:

dΦy [g] (ĝ − g)′(p) = − ∂

∂e2
g (p, y − Φy [g] (p) .d(ĝ − g)(p)− (ĝ − g) (p, y − Φy [g] (p))

Solving it leads us to:

dΦy [g] (ĝ − g)(p) =−
∫ p

p1

(
(ĝ − g) (t, y − Φy [g] (t)).e

[∫ s
p

∂
∂e2

g(u,y−Φy [g](u))du
])

dt

=−
∫ p

p1

(
(ĝ − g) (t, y − Sy [g] (t)).e

[∫ s
p

∂
∂e2

g(u,y−Sy [g](u))du
])

dt

=−
∫ p

p1
((ĝ − g) (t, y − Sy [g] (t)).v(p, t)) dt

So the statement is proved.

Proof of Proposition 4.1.

Proof. The proof is based on the same properties as in Vanhems (2006). To prove the
consistency of Ŝy(p), we need to prove there exists a unique solution to each differential
system (2.2) and (??). Following Cauchy-Lipschitz theorem, g and ĝ satisfy the Lipschitz
condition:

|g(p, y2)− g(p, y1)| ≤ k|y2 − y1|, for all(p, y1, y2),

|ĝ(p, y2)− ĝ(p, y1)| ≤ k̂|y2 − y1|, for all(p, y1, y2).

Under the assumption that K and fPYW are continuously differentiable of order r ≥ 2,
both conditions are satisfied. Moreover, to guarantee the stability of the inverse problem,
we need to impose that the estimated Lipschitz factor k̂ converges in probability to k of
or in other words that ∂

∂e2
ĝ converges uniformly in probability to ∂

∂e2
g. This condition is

fulfilled under assumption [A7].

Proof of Theorem 4.2:

Proof. We analyze the following term:
∫ p
p1(ĝ − g)(t, y)dt. The objective is to prove that:

supy∈[0,1]

∫
E{
∫ p

p1
(ĝ − g)(t, y)dt}2dp = O(n−τ

2(β+ν)−1
2β+α )
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To prove the result, we follow the demonstration in Hall and Horowitz (2005) and define:

Dny(p) =
∫ p

p1
{
∫
g(x, y)fPYW (x, y, w)T+

y (f̂PYW − fPYW )(t, y, w)dxdw}dt

An1y(p) =
1
n

n∑
i=1

∫ p

p1
(T+
y fPYW )(t, y,Wi)QiKhy(y − Yi)dt,

An2y(p) =
1
n

n∑
i=1

∫ p

p1
{T+

y (f̂ (−i)
PYW − fPYW )}(t, y,Wi)QiKhy(y − Yi)dt−Dny(p),

An3y(p) =
1
n

n∑
i=1

∫ p

p1
{(T̂+

y − T+
y )fPYW }(t, y,Wi)QiKhy(y − Yi)dt+Dny(p),

An4y(p) =
1
n

n∑
i=1

∫ p

p1
{(T̂+

y − T+
y )(f̂ (−i)

PYW − fPYW )}(t, y,Wi)QiKhy(y − Yi)dt.

Then
∫ p
p1 ĝ(t, y) = An1y(p) +An2y(p) +An3y(p) +An4y(p) and the theorem will follow if we

prove that:

E‖An1y −
∫ .

p1
g(t, y)dt‖2 = O(n−τ

2(β+ν)−1
2β+α ), (A.1)

E‖Anjy‖2 = O(n−τ
2(β+ν)−1

2β+α ), forj = 2, 3, 4. (A.2)

To derive (A.1), note that ‖EAn1y(p) −
∫ p
p1g(t, y)dt‖2 ≤ 2(‖I1‖2 + ‖I2‖2) with ‖I2‖2 =

O(h2r
y a
−2) and

I1 = −a
∑
k

∑
j

byjcyjk(λj + a)−1φyk(p).

Therefore,

‖I1‖2 =
∑
k

a∑
j

byjcyjk(λj + a)−1

2

≤ C2

a∑
j

|byj |j−ν(λj + a)−1

2

We then divide the series up to the sum over j ≤ J � a−1/α and the complementary part.
Following Hall and Horowitz (2005), we bound the right-hand side by a2

∑
j≤J(byjj−ν/λj)2+∑

j>J(byjj−ν)2. Under assumptions[A3] and [A4], we prove that:

‖EAn1y(p)−
∫ p

p1
g(t, y)dt‖2 = O(n−τ

2(β+ν)−1
2β+α ). (A.3)

Using [A2], we deduce that

nvar{An1y(p)} ≤ const.E

[
K2
hy(y − Y )

(∫ p

p1
T+
y fPYW )(t, y,W )dt

)2
]
.

12



Then we prove, from an expansion of T+
y fPYW and 1[p1,p] in their generalized Fourier series,

that ∫
var{An1y(p)}dp ≤ const.

1
nhy

∑
jklpq

djkdlpcjqclq
(λj + a)(λl + a)

≤ const.
1
nhy

∑
j

λjj
−2γ

(λj + a)2

Using the same series decomposition as previously, we prove that

E‖An1y − EAn1y‖2 =
∫
var{An1y(p)}dp

= O
(

(nhy)−1a−(α+1−2γ)/α
)

= O

(
n
−τ 2(β+ν)−1

2β+α

)
Result (A.1) is implied by this bound and (A.3).
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