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Abstract 

 

The influence function is well known in classical statistics. It is often used in the context of 
outlier-robust estimation to study properties of estimators or derive robust estimators. There 
have been attempts to adapt the influence function to finite population sampling under the 
design-based approach to inference. Although many of these adaptations are quite useful for 
variance estimation, they are not entirely satisfactory for robust estimation; either they fail to 
fully take the sampling design into account or they are not easily generalizable to arbitrary 
sampling designs.  

 
We show that, in classical statistics, the influence function has an approximate relationship 
with the conditional bias. This suggests that the conditional bias might be a useful measure 
of influence since it can be easily extended to any inferential framework unlike the influence 
function. We use the conditional bias to derive robust estimators in finite population sampling 
by downweighting the most influential sample units. Under the model-based approach to 
inference, our proposed robust estimator is closely related to the well-known estimator of 
Chambers (1986). Under the design-based approach, it possesses the desirable feature of 
being applicable with arbitrary sampling designs. For stratified simple random sampling, it is 
essentially equivalent to the estimator of Kokic and Bell (1994).  The proposed robust 
estimator involves a  -function, which depends on a tuning constant. In this paper, we 

propose a method for determining the tuning constant, which consists of minimizing the 
maximum estimated conditional bias. A limited simulation study is conducted to investigate 
the performance of the proposed robust estimator in terms of relative bias and relative 
efficiency. Finally, we discuss a popular method used in practice that consists of setting 
equal to one the weight of units identified as influential. We show that this method can be 
linked to the concept of conditional bias. 
 
 

1. Introduction 
 

1.1. The influence function in classical statistics 
 

The influence function (Hampel, 1974) is well known in classical statistics. It is often used in 
the context of outlier-robust estimation to study properties of estimators or derive robust 

estimators. To fix ideas, let iY , 1,...,i n , be n independent random variables having the 

same distribution F and suppose that we are interested in estimating ( )t F  . For a given 

fixed value y, the influence function is defined as 
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where y  is the degenerate distribution in y. If ( )t F   is the mean of F, the influence 

function reduces to ( ; , )IF y t F y   , which is clearly unbounded. Robustness is typically 

achieved by choosing functionals ( )t F  that have a bounded influence function such as the 

median of F.   
 

Let us now consider the estimator ˆ ˆ( )t F   of  , where 
1

ˆ
i

n
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  is the empirical 

distribution function. A well-known approximation (e.g., Hampel, Ronchetti, Rousseeuw, and 
Stahel, 1986, p. 85) that uses the influence function (1.1) is 
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with  ( ; , ) 0F iE IF Y t F  , 1,...,i n . This approximation is sometimes used to estimate the 

variance of ̂ . 
 
 

1.2. The conditional bias and its relationship with the influence 
function in classical statistics 

 

In the context of classical statistics, Muñoz-Pichardo, Muñoz-Garcia, Moreno-Rebollo and 
Piño-Mejias (1995) proposed to use the conditional bias  
 

  ˆ( ; ) |i F i iB y E Y y       (1.3) 

 
as a measure of the influence of the ith observation. Using the approximation (1.2), with 

 ( ; , ) 0F iE IF Y t F  , it is straightforward to approximate the conditional bias (1.3) by 
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The conditional bias is thus approximately proportional to the influence function ( ; , )iIF y t F . 

This justifies why it can be viewed as an influence measure for the ith observation. From (1.2) 

and (1.4), the error ̂   can be approximated as  
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The conditional bias can thus also be viewed as the contribution of the ith observation to the 

error ̂  . Robustness is achieved by curbing the influence (or contribution) of the largest 

observations on this error. 
 



Example: Suppose that   is the mean of distribution F and 
1

ˆ n

ii
Y n


  is the sample 

mean. The conditional bias is ( ; ) ( )i iB y y n    and the estimator ̂  is the solution in   

to the estimating equation 
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  or, alternatively, 

1
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  . It is well 

known that ̂  is not robust. The M-estimator, ˆM , is a common robust alternative to ̂ . It is 

obtained as the solution in   to the estimating equation 
1

( ) 0
n
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  , where ( )   is 

any bounded function such that ( )z z   when z is close to 0. A typical choice is the Huber 

function: 

  ( ; ) sign( ) min ,z c z z c      

 

where c is a positive tuning constant and sign( ) 1z  , 0z  , while sign( ) 1z   , otherwise. A 

large choice of c yields the non-robust estimator ̂  while choosing c  close to zero yields the 

sample median, which is more robust than ̂  but could potentially be biased as an estimator 

of   and inefficient under the ideal parametric distribution F. The choice of the tuning 

constant c is usually determined by making a compromise between robustness and 
efficiency. 
 
 
 

1.3. The influence function in finite population sampling 
 

In finite population sampling, inference is usually made with respect to the known probability 

sampling design ( )P S  that is used to select a random sample S from the finite population U 

of size N. This is often called the design-based approach to inference. In this approach, only 
the sample inclusion indicators are random; all other quantities are treated as being fixed. 
The influence function (1.1) seems irrelevant in the design-based approach because there is 

no underlying distribution F that is assumed to have generated the population values iy , 

i U , at least for inference purposes. To circumvent this difficulty, one might view the 

sampling design P, which generates the sample inclusion indicators, as playing the role of 
the distribution F and continue using (1.1) or a similar definition. However, there does not 

seem to be any natural and unique definition of a functional ( )t P  , with   being here 

some finite population parameter; e.g., the population mean 
ii U

y N


 .  

 
A more frequent way of defining the influence function in finite population sampling consists 

of replacing F by 
iN yi U

F N


  so that the finite population parameter   can be 

expressed as ( )Nt F  . Unfortunately, this leads to an influence function that fails to 

account for the sampling design. For instance, if ( )Nt F   is the population mean of NF , i.e. 

ii U
y N


 , the influence function is again ( ; , )NIF y t F y   . The quantity 

( ; , )i N iIF y t F y    is not a good measure of the influence of unit i because it ignores the 

sampling design. As an example, suppose that unit i is selected with certainty in the sample. 
It would seem intuitively appealing to consider an influence measure that is equal to 0 for this 

unit. This is unfortunately not the case of ( ; , )i N iIF y t F y    because it does not involve 

the sampling design.   
 
Approximations analogous to (1.2) have also been developed within the design-based 
approach (e.g., Campbell, 1980; Gwet and Rivest, 1992; Deville, 1999; and Demnati and 



Rao, 2004). All these methods are quite useful for variance estimation, but they lead to 
influence measures that again do not account for the sampling design. Approximations 
similar to (1.2) may thus not provide a useful starting point for determining an influence 
measure for unit i that can then be used to derive robust estimators and study their 
properties. 
 
Assuming with-replacement sampling, and thus independent and identically distributed 
observations, Zaslavsky, Schenker and Belin (2001) extended the definition (1.1) to finite 
population sampling under the design-based approach. Hulliger (1995) defined a sensitivity 
curve for probability proportional to size sampling. He took the sampling design into account 

by expressing the finite population parameter   as a function of the population values of the 

size variable. Although the sampling design is involved in both methods, they again yield a 
non-zero influence measure for a unit i selected with certainty in the sample. Also, it does not 
seem easy to generalize these methods to arbitrary sampling designs with possibly large 
sampling fractions. 
 
We have pointed out above that the extension of the influence function to the design-based 
approach to inference in finite population sampling is not trivial. In section 1.2, we have also 
shown the relationship between the influence function and the conditional bias in classical 
statistics. This suggests that the conditional bias might be a useful measure of influence 
since it can be easily extended to any inferential framework unlike the influence function. In 
the next two sections, we use the conditional bias to derive robust estimators in finite 
population sampling by downweighting the most influential sample units. We first consider 
the model-based approach to inference in section 2. Our robust estimator is closely related to 
the well-known estimator of Chambers (1986). We then consider the design-based approach 
to inference in sections 3, 4 and 5. In this approach, the conditional bias has been earlier 
studied by Moreno-Rebollo, Muñoz-Reyes and Muñoz-Pichardo (1999) and Moreno-Rebollo, 
Muñoz-Reyes, Jimenez-Gamero and Muñoz-Pichardo (2002). Our proposed robust estimator 
possesses the desirable feature of being applicable with arbitrary sampling designs. For 
stratified simple random sampling, it is essentially equivalent to the estimator of Kokic and 
Bell (1994).       
 
 

2. Inference for finite populations : the model-based approach 
 

In the model-based approach to inference in finite population sampling (e.g., Valliant, 
Dorfman and Royall, 2000), the Y-values of the N population units are assumed to be 
generated by some model. We denote by X, the known N-row matrix containing the vector of 

explanatory variables i
x  in its ith row. Often, the following linear model is considered: 

 

Model: ( )i i iY  x β  given X, i U , are mutually independent and have all the same 

distribution F, where β  is a vector of unknown model parameters and i  is usually 

assumed to be known up to a constant factor. Furthermore, the distribution F has a mean of 
0 and a variance of 1.  
 
A non-informative sample s is selected from the finite population U and is treated as fixed 
when making inferences. The interest is in the prediction of a function of the population Y-
values through the sample Y-values. To fix ideas, we will assume that we are interested in 

predicting the random population total ii U
Y


 . Royall (1976) proposed the Best Linear 

Unbiased Predictor (BLUP) of ii U
Y

 , which can be expressed as     
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In this context, the conditional bias attached to unit i is given by 
 

  ˆ( ; ) | ,i i F i iB y E s Y y   β  . (2.3) 

 

Note that definition (2.3) is slightly different than definition (1.3) to account for the fact that   

is a random variable in this section. Using (2.1) and noting from (2.2) that 

i i ii s i U
w

 
 x x , the conditional bias (2.3) can be expressed as  
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This expression highlights that the conditional bias takes a different form depending on 
whether unit i has been selected in the sample or not. The prediction error of the BLUP can 
be written as  

 ˆ ( ; )i ii U
B Y 


  β . (2.5) 

 

Therefore, the conditional bias ( ; )i iB Y β  can be interpreted as the contribution of unit i to the 

prediction error of the BLUP. Although they did not consider the concept of the conditional 
bias, Beaumont and Rivest (2009) showed that this decomposition of the prediction error 

holds for any weighted estimator that satisfies the calibration equation i i ii s i U
w

 
 x x .  

 
To construct a robust version of the BLUP, we first express it as: 
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   β β . (2.6) 

 

From (2.5), the first term on the right-hand side of (2.6) is equal to   and is thus not affected 

at all by influential units. The error comes entirely from the second term. To obtain 

robustness, it would be desirable to reduce the contribution of the largest ( ; )i iB Y β  on this 

second term. It is not possible for nonsample units as their conditional bias is not observed. 
Thus, nothing can be done at the estimation stage to obtain protection against influential 
units in the nonsample portion of the population. Protection can be achieved against the 
occurrence of influential sample units by downweighting their contribution in the second term 
on the right-hand side of (2.6). Using (2.4), this leads to the robust estimator:  
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In general, the vector β  is unknown and must be replaced by some estimator β̂ , which 

yields the robust estimator ˆ ˆ( )R β . The estimator β̂  could be any robust estimator developed 

in classical statistics, as in Chambers (1986), or could be obtained using an independent 



source of data, as in Kokic and Bell (1994). Other non-robust estimators should be avoided, 

as prescribed in the literature. The function ( )   can be the Huber function. If the underlying 

tuning constant c is large, the estimator ˆ ˆ( )R β  reduces to the BLUP for every choice of β̂ .   

 

It is interesting to note that the robust estimator ˆ ˆ( )R β , obtained from (2.7), is closely related 

to the estimator developed by Chambers (1986) using other arguments not involving the 
conditional bias. Chambers’ estimator is:  
 

  ˆ ˆ ˆ ˆˆ ˆ( ) ( 1) ( )C
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       β x β x β  , (2.8) 

 

where ˆi  is a robust estimator of i . It reduces the impact of large standardized residuals 

ˆ ˆ( )i ì iY  x β  but, unlike ˆ ˆ( )R β , does not address the combined influence of weights 

ˆ( 1)i iw   and standardized residuals. Both ˆ ˆ( )R β  and ˆ ˆ( )C β  are special cases of a slightly 

more general estimator given in equation (6) of Beaumont and Rivest (2009). In an empirical 

study, they have shown a slight superiority of ˆ ˆ( )R β  over ˆ ˆ( )C β . 

 
From the above discussion, it seems that the conditional bias is useful for deriving robust 
estimators in the model-based approach to inference. Next, we apply this general 
methodology to the design-based approach to inference.     
 
 

3. Inference for finite populations : the design-based 
approach 

 

As pointed out in section 1.3, the y-values of the N population units are treated as fixed in the 
design-based approach to inference and a random sample S is selected from the finite 

population U according to a probability sampling design ( )P S . We denote by iI , i U , the 

N sample inclusion indicators such that 1iI  , if i S , and 0iI  , otherwise. Let us suppose 

again that we are interested in estimating the finite population total ii U
y


  and that we 

consider the Horvitz-Thompson estimator ˆHT

i ii S
d y


 , where 1i id   is the design 

weight attached to unit i and Pr( 1)i iI    is its first-order inclusion probability. The Horvitz-

Thompson estimator is design-unbiased; i.e., ˆ( )HT

PE   , where the subscript P indicates 

that the expectation is evaluated with respect to the sampling design. For a sample unit, the 
conditional bias of the Horvitz-Thompson estimator is defined as  
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  ,  (3.1) 

 

where Pr( 1, 1)ij i jI I     denotes the second-order inclusion probability of units i and j. 

Using ˆ( )HT

PE   , it is not difficult to show that the conditional bias for a nonsample unit is 
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See also Moreno-Rebollo et al. (1999) and Moreno-Rebollo et al. (2002). Note that the 

conditional bias ( 1)HT

i iB I   is equal to 0 when 1i  . In other words, the conditional bias is 

0 for any unit selected with certainty in the sample. This is an intuitively-appealing property. 
Note also that the design variance of the Horvitz-Thompson estimator can be expressed as 
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   . 

 

Therefore, the design variance of ˆHT  is identically equal to 0 if and only if ( 1) 0HT

i iB I    

for all i U . In other words, the design variance is zero when no unit has an influence. For 

instance, this occurs when the sample size is fixed and ,i iy a   for some constant a. This 

also occurs when a census is conducted.  
 
For some sampling designs, the sampling error of the Horvitz-Thompson estimator can be 
written as 
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                              (3.3) 

 
It can be shown that (3.3) holds if   
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                                              (3.4)  

                           
 

 

where  1(1 ) ( 1) ( 1) .HT

i i i i i ia B I d y       For fixed size sampling designs, the condition 

(3.4) is satisfied if the coefficient ia
 
is independent of i, noting that   0.i ii U

I 


   In 

Section 3.1, we observe that (3.3) holds exactly for Poisson sampling, whereas it holds only 
approximately for stratified simple random sampling and fixed-size high-entropy sampling 
with varying first-order inclusion probabilities.  
 
Provided that (3.3) holds, the conditional bias can again be interpreted as the contribution of 
unit i to the sampling error of the Horvitz-Thompson estimator. Using an argument similar to 
the one that led to (2.7), we obtain the following robust alternative to the Horvitz-Thompson 
estimator:  
 

    ˆ ˆ ( 1) ( 1)RHT HT HT HT
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       .     (3.5) 

 

The conditional bias ( 1)HT

i iB I   in (3.4) depends in general on unknown population 

parameters that should be estimated robustly or using an independent source of data. The 

resulting estimated conditional bias is denoted by ˆ ( 1)HT

i iB I   and replaces ( 1)HT

i iB I   in 

(3.5) when it is unknown.  
 
 

3.1. Examples 
 

Poisson sampling  
 

For Poisson sampling, ij i j   , ,i j  and the conditional bias in (3.1) reduces to 

 



                                                     ( 1) 1 .HT

i i i iB I d y         (3.6) 

 

Unit i has a large influence if its design weight, ,id  is large and/or if its y-value, ,iy  is large. 

Note that the conditional bias is known for all the sample units; that is, it does not need to be 

estimated.  Also, it follows from (3.6) that (3.4) is satisfied since 0ia   for all i for Poisson 

sampling. As a result, the decomposition (3.3) holds exactly. 
 
Now, using (3.6) in (3.5), we obtain the following robust version of the Horvitz-Thompson 
estimator: 
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where  
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Noting that  0 / 1,t t 
 
it follows that 1 .i iw d   That is, if the conditional bias for unit i 

is small, its weight iw  will reduce to its original weight, id . In other words, the weight of the 

non-influential units is not modified. Inversely, the weights of influential units (i.e., the units 

with a large conditional bias) is reduced. Note that the weights iw  cannot be smaller than 1, 

which is intuitively appealing. 
 
 
Stratified simple random sampling  
 
For without-replacement stratified simple random sampling, it is straightforward to show that    
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where hN  is the population size in stratum h, hn  is the sample size in stratum h, 

1

h
h h hii U

Y N y


   and hU  is the set of population units in stratum h. From (3.8), an 

observation in stratum h has a large influence when it is far from the stratum mean, .hY  As 

discussed above, the conditional bias (3.8) can be estimated by estimating the unknown 

population mean in stratum h, hY  (e.g., using the median of the sample y-values in stratum h 

or using an independent source of data). Ignoring the factor ( 1)h hN N   in (3.8) and 

considering the one-sided Huber function ( ; ) min( , )z c z c  , the resulting robust estimator 

(3.5) becomes equivalent to the Winsorized estimator of Kokic and Bell (1994).   Also, 

ignoring the factor ( 1)h hN N  , the condition (3.4) is satisfied, noting that  hi h h ha N n Y  , 

which is independent of i within each stratum h. As a result, the decomposition (3.3) holds 
approximately. 
 



 
High entropy sampling designs 
 
In this section, we consider the family of high entropy sampling designs. In the case of the 
maximum entropy fixed size sampling design (often called Conditional Poisson sampling), 

Hajek (1981) proposed the following approximation of :ij  
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where  1 ,l l

l U

D  


   assuming that n  and .N   Berger (1998) showed that this 

approximation can be used for a larger class of highly randomized and high entropy sampling 
designs, including the Rao-Sampford design (Rao, 1965; Sampford, 1967) and the Chao 
procedure (Chao, 1982). Using (3.9) in (3.1), we can approximate the conditional bias 
attached to unit i by 
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   Under mild regularity conditions, the term 

 1 1i iD     in (3.10) is  1 .O N 
 Assuming that the population size N is large, we can 

neglect this term from  (3.10), which leads to 
 

                                            ( 1) 1 .HT
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Note that B in (3.11) can be seen as a census regression coefficient obtained by fitting a ratio 
model with y as the dependent variable and the inclusion probability of a unit as the 

independent variable. From (3.11), it is clear that unit i has a large influence if its weight, ,id  

is large or if its census residual, ,i iy B  is large. Also, it follows from (3.11) that (3.4) is 

satisfied since ,ia B   which is independent of i. As a result, the decomposition (3.3) holds 

approximately. 
                              
The previous examples show that the conditional bias (3.1) is a measure of influence that 
fully account for the sampling design. A given observation may be highly influential under a 
given sampling design and have no influence under another sampling design. To illustrate 

this point, consider a population consisting of N population values 1,..., ,Ny y  such that 1 0,y   

2 1... 500Ny y     and 1000Ny 
 
so that the population mean is equal to 500. Under 

simple random sampling without replacement, both 1y  and Ny are influential because they 

are far from the population mean (see expression (3.8)), whereas 1y  has no influence under 

Poisson sampling (see expression (3.6)). 
 
 
 
 
 
 
 



3.2. Choice of the tuning constant 
 
 

The  -function (e.g., the Huber function) in (3.5) usually depends on a tuning constant c. A 

suitable value for c is sometimes determined by minimizing an estimator of the mean square 
error of the robust estimator (e.g., Hulliger, 1995; Kokic and Bell, 1994; and Beaumont and 
Rivest, 2009). We propose an alternative approach. It consists of finding the value of c that 
minimizes 
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where ˆ ( 1; )RHT

i iB I c  is an estimator of the conditional bias of the robust Horvitz-Thompson 

ˆRHT . From (3.5), this conditional bias can be written as 
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As pointed out above, the conditional bias ( 1)HT

i iB I  , if unknown, can be estimated by 

ˆ ( 1)HT

i iB I  . A conditionally unbiased estimator of the last conditional expectation in (3.13) is 

simply  ˆ ˆ( 1); ( 1)HT HT
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  . This yields the estimator   
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Alternatively, one can replace ( )c  in (3.14) by ( )R c , some robust alternative to the 

average in (3.14). For instance, the once-Winsorized mean (e.g., Rivest, 1994) could be 
used. Note that the median may not be suitable as it leads to a value of c that may require 

downweighting more than half of the sample units; otherwise, ( ) 0R c   and 

ˆ ˆ( 1; ) ( 1)RHT HT

i i i iB I c B I    for all sample units.  

 

To minimize (3.12) using (3.14), one can first try several values of c. We suggest 0c   and 

ˆ ( 1)HT

i ic B I  , for i S . Then, (3.12) can be minimized among those values of c. For a 

given value of c, note that the maximum in (3.12) is either  ˆmax ( 1) ; ( )HT

i iB I i S n c     

or  ˆmin ( 1) ; ( )HT

i iB I i S n c    . The global minimum of (3.12) can be found by noting 

that ( )c  is piecewise linear in c.  

 
 
 
 
 
 



3.3. Robust version of the generalized regression estimator 
 
 

In this section, we consider the case of the generalized regression estimator (GREG) of 

.i
i U

y


  We assume that a vector of auxiliary variables ix  is available for all i S  and that 

the population total of the x -vector, ,i

i U

x  is known. The GREG estimator of   is given by 
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and i  is a known constant attached to unit i. 

 
Using a first-order Taylor expansion and neglecting the higher order terms, we can write 
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where  i i iE y   x γ  denotes the census residual attached to unit i with  
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The asymptotic conditional bias attached to unit i with respect to the GREG estimator is 
given by 
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  and the conditional bias 

( 1)G

i iB I   can be approximated by (3.1) with iy  replaced by .iE In this case, for Poisson 

sampling and stratified simple random sampling, the asymptotic conditional bias attached to 

unit i is obtained from (3.6) and (3.8), respectively, by replacing iy  with .iE  For these two 

sampling designs, a unit has a large influence if its design weight is large and/or its census 
residual is large. 
 

Following the approach described above, we define a robust version of  ˆG  as 
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                              (3.16)  

 

Once again, the conditional bias ( 1)G

i iB I   in (3.16) depends in general on unknown 

population parameters that should be estimated robustly or using an independent source of 



data. The resulting estimated conditional bias is denoted by ˆ ( 1)G

i iB I   and replaces 

( 1)G

i iB I   in (3.16).  

 
 
 

4. Empirical study 
 

We conducted a limited simulation to investigate the performance of the proposed robust 
estimator in terms of relative bias and relative efficiency. We generated three populations of 

size 500,N   each consisting of an auxiliary variable x and a variable of interest y. First, the x-

values were generated from a Gamma distribution with mean 100 and standard deviation 50. 
Then, for the non-outlier portion of the populations, the y-values were generated according to 
the ratio model 
 

2 ,i i iy x    

 

where the error terms i were generated from a normal distribution with mean 0 and variance 

2 ,  whose value was set to lead to a coefficient of determination (
2R ) approximately equal to 

0.8. Note that the outliers were manually added in the population. 
 
From each population, we selected R = 10, 000 samples according to Poisson sampling with 

inclusion probabilities, ,i  proportional to ;ix  that is, / .i i i

i U

nx x


   The expected sample size 

was set to 10, 25, 50 and 100. 
 
Figures 1a)-1c) show the relationship between the variables x and y. Note that Population 1 
contained no influential value, whereas Population 2 and Population 3 contained 4 and 10  
influential values, respectively. For the latter populations, the observations in the upper left side 
of the plots (Figures 1b) and 1c)) are highly influential under Poisson sampling (see expression 
(3.6)) because they exhibit both a large design weight and a large y-value. 
 
 
In each sample, we computed three estimators: (i) the Horvitz-Thompson estimator given by 

ˆ .HT

i ii S
d y


  (ii) The robust estimator (3.4), where the tuning constant c was chosen so that 

(3.11) was minimized among the set of values 0c   and ( 1) ( 1)HT

i i i ic B I d y     for i S . 

We denoted the resulting estimator by ˆ .RHT

cb  (iii) The robust estimator (3.5), where the tuning 

constant c was chosen so that its estimated mean square error was minimized; e.g.,  Hulliger 

(1995) and Beaumont and Alavi (2004). We denoted the resulting estimator by ˆ .RHT

mse  Note that 

the estimated mean square error of ˆRHT
in (3.5) under Poisson sampling is given by
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e.g., Gwet and Rivest (1992). 
 



For comparisons of estimators, we computed the Monte Carlo percent Relative Bias (RB) 
given by  
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   with ( )ˆ r  denoting the  estimator ̂  (either ˆ ,HT  ˆRHT

cb  or  ˆRHT

mse  

),  in the r-th simulated sample, 1,..., .r R  We also computed the Monte Relative Efficiency 

(RE), using the Horvitz-Thompson estimator, ˆ ,HT  as the reference:   
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Table 1 shows the values of RB and RE for the three estimators described above. Finally, in 
each sample, we computed the percent Absolute Relative Error (ARE) given by 
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We obtained the  90-th, 95-th and 99-th percentiles of the ARE values. The results are shown in 

Table 2.  
 

From Table 1, we note that the Horvitz-Thompson estimator, ˆ ,HT  showed a negligible bias in 

all the scenarios, as expected. The robust estimators ˆRHT

cb  and ˆRHT

mse  were slightly or 

moderately biased, as expected. We note that the RB decreased as the expected sample size 
increased. For Population 1 (that did not contain any influential observation), we note that both 
robust estimators were slightly less efficient than the Horvitz-Thompson estimator with a value 
of RE ranging from 100 to 108. For Population 2 (that contained 4 influential units), both 
ˆRHT

cb and ˆRHT

mse  were significantly more efficient than the Horvitz-Thompson estimator. For 

example, with an expected sample size equal to 10, the value of RE corresponding to ˆRHT

cb  

was equal to 67%, whereas it was equal to 69% for ˆ .RHT

mse  Also, we note that the value of RE 

approached 100% as the expected sample size increased. This seems to suggest that our 
robust estimators are consistent. However, the formal proof of consistency is beyond the scope 
of this paper. Observations similar to those about Population 2 can be made for Population 3. 

Comparing ˆRHT

cb  and ˆ ,RHT

mse  we note that they performed similarly in terms of both RB and RE 

with a slight advantage for ˆ .RHT

cb  These results suggest that minimizing (3.12) can be viewed 

as a good alternative to minimizing the estimated mean square error. 



Table 2 shows that both robust estimators performed similarly in terms of the percentiles of the 
AREs and much better than the Horvitz-Thompson estimator for Population 2 and Population 3. 
For Population 1, which contains no influential observation, all three estimators performed 
similarly. The benefits of using a robust estimator over the Horvitz-Thompson estimator are 
much more apparent when the sample size is smaller. 
 
 

Figure 1: Relationship between x and y  
 

(a) Population 1 (b) Population 2 

 
 

 

 
(c) Population 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1: Monte Carlo percent Relative Bias and Relative Efficiency (in parentheses) of three 
estimators 

 

N ˆHT  ˆRHT

cb  ˆRHT

mse  

Population 1 

10 -0.2 
(100) 

-9.8 
(106) 

-12.0 
(108) 

25 -0.2 
(100) 

-3.7 
(102) 

-5.1 
(104) 

50 0.1 
(100) 

-1.8 
(101) 

-2.6 
(102) 

100 0.0 
(100) 

-0.9 
(100) 

-1.3 
(101) 

Population 2 

10 -0.1 
(100) 

-12.3 
(67) 

-14.3 
(69) 

25 -0.1 
(100) 

-6.6 
(69) 

-7.8 
(71) 

50 0.0 
(100) 

-4.4 
(69) 

-5.1 
(72) 

100 0.0 
(100) 

-3.3 
(72) 

-3.6 
(74) 

Population 3 

10 0.2 
(100) 

-14.9 
(59) 

-16.9 
(61) 

25 0.5 
(100) 

-8.7 
(65) 

-10.0 
(65) 

50 -0.1 
(100) 

-6.5 
(75) 

-7.5 
(74) 

100 0.1 
(100) 

-4.4 
(85) 

-5.4 
(83) 

 
 
Table 2: Percentiles for the Absolute Relative Error of three estimators 
 

 ˆHT  ˆRHT

cb  ˆRHT

mse  

90% 95% 99% 90% 95% 99% 90% 95% 99% 

n Population 1 

10 52 62 84 55 64 80 55 64 80 

25 33 40 53 34 40 52 35 41 52 

50 23 27 36 23 27 36 23 27 36 

100 15 18 23 15 18 23 15 18 23 

 Population 2 

10 55 67 163 55 64 79 56 65 80 

25 37 46 95 35 40 53 35 41 53 

50 26 33 58 24 28 36 24 28 37 

100 19 24 36 16 19 26 17 20 26 

 Population 3 

10 61 83 170 56 64 81 57 66 81 

25 42 55 104 36 44 60 37 44 57 

50 30 37 60 27 32 42 27 32 41 

100 31 26 38 20 23 31 19 23 30 



 
 

5. A method frequently used in practice 
 

A popular method used in practice is to reduce the weight of units that have been identified 
as influential. Most often, the weight of these units is set equal to one, while the outstanding 
weight is redistributed among the other units. This method would only be appropriate if the 
unit identified as influential is unique in the population.  In this section, we show that this 
method can be expressed in terms of the conditional bias. Suppose for now that a single unit 
was identified as influential, say k. 
 

Let ˆ ( 1)HT

i iB I   be a conditionally design-unbiased estimator of the conditional bias 

( 1)HT

i iB I   in (3.1). We have  
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provided ij > 0 for all .j U  That is,  ˆ ( 1) ( 1) | 1 0.HT HT

p i i i i iE B I B I I       Furthermore, 

consider the following  -function:  
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                                                      (5.2) 

 
The  -function in (5.2) can be viewed as the extreme case of a redescending  -function. 

Then, replacing ( 1)HT

i iB I   in (3.5) with ˆ ( 1)HT

i iB I   given by (5.1) and using (5.2) leads to 
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                                                        (5.3) 

 

noting that  ˆ ˆ( 1) ( 1),HT HT

i i i iB I B I     except for .i k  From (5.3), we note that unit k has 

now a weight equal to 1, whereas the weight of unit j is equal to /k kj   for .j k  The 

weight /k kj   represents the inverse of the inclusion probability of unit j under the 

conditional sampling design ( 1).kP S I   For example, in the case of simple random 

sampling without replacement, we have    / 1 / 1k kj N n      for ,j k  and the sum of 

weights remains equal to N. This situation was discussed in Rao (1971).  
 

Now, suppose that m n  units were identified as influential, say the first m units, 1,..., .m  In 

practice, the weight of these units is set equal to one and the outstanding weight is 
redistributed among the remaining units. We define a measure of the joint influence of units 

1,..., ,m  on  ˆHT  as 
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                  (5.4) 

 

where mS denotes the subset consisting of the m influential units,   1... 1 1,..., 1m mP I I     

denotes the joint inclusion probability of unit 1,…,m and 1...j m  is defined similarly. Once again, 

a conditionally p-unbiased estimator of 1... 1( 1,..., 1)HT

m mB I I   in (5.4) is given by  
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We consider a robust estimator of the form 
 

                            

* 1... 1

1...

1...

ˆ ˆ ˆ ( 1,..., 1)

        ,
m m

RHT HT HT

m m

m
k j

k S j S S j m

B I I

y y

 



  

   

  
                                         (5.6) 

 

where 
1... 1
ˆ ( 1,..., 1)HT

m mB I I   is given by (5.5). From (5.6), we note that the weight of each of the 

m influential units is now equal to 1, whereas the weight of the remaining units is equal to 

1...

1...

,m

j m




 1,..., .j m  In the case of simple random sampling without replacement, the latter 

weight reduces to ( ) / ( ).N m n m   When 2,m   it is not possible to express (5.6) as a 

special case of (3.5) (as in the case of single influential unit). An estimator similar to (3.5) could 
be developed but the latter would require higher order inclusion probabilities, which is not 
practical. 
 
The rationale underlying (5.3) or (5.6) is to reduce the impact of units that have been identified 
as influential to the extent that they only represent themselves in the final estimate. This 
approach is appropriate only if these units are unique, which is not generally the case. As a 
result, this type of estimators tends to exhibit large biases.  

 
 
 

6. Conclusion 
 

We have shown that the conditional bias can be useful for deriving robust estimators in finite 
population sampling. Implementation of these estimators can be done by modifying either the 
y-values or the design weights of sample units. Estimating their variance is a topic that 
requires more investigation. Replication methods seem to be attractive in this context. 
Finally, the conditional bias could also be used as a diagnostic tool for choosing among 
alternative sampling designs those that offer some degree of protection against the potential 
occurrence of influential sample units (Bocci and Beaumont, 2006). 
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