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1 Introduction

Single imputation, which consists of replacing a missing value by an artificial value, is
often used in statistical agencies for treating item nonresponse. The main objective of
imputation is to reduce the nonresponse bias, which may be appreciable when the respon-
dents and the nonrespondents differ with respect to the study variables. Key to reducing
the nonresponse bias is the availability of powerful auxiliary variables for all the sample
units (respondents and nonrespondents). Household and social surveys typically collect
categorical variables. In order to avoid the possibility of impossible values in the imputed
data file, it is customary to use some form of donor imputation methods such as nearest-
neighbour imputation or random hot-deck imputation. This type of imputation consists
of selecting (at random or not) a respondent (donor) from the set of respondents and
using the donor’s item values to "fill in" the missing value of a nonrespondent (recipient).
In this paper, we focus on survey weighted random hot-deck imputation, under which
donors are selected at random with probability proportional to the sampling weight. In
practice, survey weighted random hot-deck imputation is generally applied within impu-
tation classes, which are formed on the basis of auxiliary information recorded for the
sample units (respondents and nonrespondents).

Most often, survey statisticians are interested in estimating simple parameters such as
population totals or means. In this case, marginal imputation, which consists of imputing
variables separately, leads to asymptotically unbiased estimators, provided the assumed
model is correctly specified (Haziza, 2009). For example, one may use random hot-deck
imputation for each variable requiring imputation. However, marginal imputation distorts
the relationship between variables. As a result, estimators of bivariate parameters such as
regression and correlation coefficients may be severely biased, especially if the nonresponse
rates are appreciable. Thus, it is desirable to develop imputation strategies which succeed
in preserving the relationship between categorical variables. For bivariate parameters
involving continuous variables, Shao and Wang (2002) proposed a joint random regression
imputation procedure and showed that it leads to asymptotically unbiased estimators of
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correlation coefficients. Chauvet and Haziza (2011) proposed a fully efficient version of
the Shao-Wang procedure in the sense that the imputation variance is eliminated or at
least, considerably reduced. A different approach for dealing with bivariate parameters
was considered in Skinner and Rao (2002), who proposed to first use marginal imputation
to fill in the missing values and then to adjust for the bias at the estimation stage.

In this paper, we propose a simple joint random imputation procedure that is closely
related to random hot-deck imputation. We show that the proposed procedure preserves
the correlation coefficient between two categorical variables. For simplicity, we consider
the case of binary variables but the extension to the case of more than two categories is
relatively straightforward.

We illustrate the proposed methods in the context of the French Wealth Survey (FWS),
which is conducted by the French National Institute of Statistics and Economic Studies
(Insee) every six years since 1986. The FWS collects information on many aspects of
wealth : financial assets, real-estate assets, business wealth, but also social, cultural and
symbolic capital. Also, information concerning the households (e.g., number of individuals
in the household, age, occupation, income) is collected in order to understand the origins
of wealth. In this paper, we focus on the 2010 FWS, for which the fieldwork began on
October 2009 and ended in March 2010. Approximately 20,000 households, belonging to
the metropolitan area, the French West Indies and the Reunion Island, were selected to
be part of the survey.

2 Set-up

Consider a finite population U of size N . Let x and y denote two study variables such
that xi = 1 if unit i possesses characteristic A and xi = 0, otherwise, and y is similarly
defined with A replaced by some other characteristic B. We are interested in estimating
the finite population correlation coefficients between x and y:

ρxy =
t11 − t10t01/N

(t10 − t210/N)
1/2

(t01 − t201/N)
1/2

,

where tkl =
∑

i∈U xk
i y

l
i, (k, l) ∈ {(1, 0), (1, 1), (0, 1)}. Note that t10 (respectively, p10 =

t10/N) represents the number (respectively, the proportion) of individuals in the popula-
tion who possess the characteristic A. Similarly t01 (respectively, p01 = t01/N) represents
the number (respectively, the proportion) of individuals in the population who possess the
characteristic B. Finally, t11 (respectively, p11 = t11/N) represents the number (respec-
tively, the proportion) of individuals in the population who possess both characteristics.

A sample s is selected from U according to a sampling design p(s). Let δ = (δ1, . . . , δN)′

be the vector of sample selection indicators, where δi = 1 if unit i is selected in the sample
and δi = 0, otherwise. Let wi = 1/πi be the sampling weight attached to unit i, where
πi = P (i ∈ s) denotes its first-order inclusion probability in the sample. A complete data
estimator of ρxy is the plug-in estimator given by

ρ̂xyπ =
t̂11,π − t̂10,π t̂01,π/N̂π(

t̂10,π − t̂210,π/N̂π

)1/2 (
t̂01,π − t̂201,π/N̂π

)1/2
, (1)
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where t̂kl,π =
∑

i∈s wix
k
i y

l
i is the expansion estimator of tkl, and N̂π =

∑
i∈s wi is the ex-

pansion estimator of the population size N . The complete data estimator (1) is asymptot-
ically unbiased for ρxy; e.g., Deville (1999). We denote by p̂10,π = t̂10,π/N̂π the estimated
proportion of individuals who possess the characteristic A. The estimated proportions
p̂01,π = t̂01,π/N̂π and p̂11,π = t̂11,π/N̂π are similarly defined.

In practice, both x and y are prone to missing values and some form of imputation is
required. We adopt the following notation: let rxi be a response indicator attached to unit
i such that rxi = 1 if i responds to item x and rxi = 0, otherwise. Similarly, let ryi = 1 if i
responds to item y and ryi = 0, otherwise. We denote by r = (rx1, ..., rxN , ry1, ..., ryN)′ the
vector of response indicators. Let x∗i be the imputed value used to replace the missing xi

and y∗i be the imputed value corresponding to missing yi. Finally, let x̃i = rxi xi+(1−rxi)x
∗
i

and ỹi = ryi yi + (1− ryi)y
∗
i . An imputed estimator of ρxy is given by

ρ̂xyI =
t̂11,I − t̂10,I t̂01,I/N̂π(

t̂10,I − t̂210,I/N̂π

)1/2 (
t̂01,I − t̂201,I/N̂π

)1/2
, (2)

where t̂kl,I =
∑

i∈s wix̃
k
i ỹ

l
i. We denote by p̂10,I = t̂10,I/N̂π the imputed estimator of

the proportion of individuals who possess the characteristic A. The imputed estimators
p̂01,I = t̂01,I/N̂π and p̂11,I = t̂11,I/N̂π are similarly defined. Note that, once the data have
been imputed, the computation of (2) does not require the response flags to be available
in the imputed data file. In other words, complete data estimation procedures may be
readily applied by secondary analysts. This is an important practical aspect since, in
many situations, the response flags are not available in the files. If the response flags are
available, an alternative to (2) is the complete case estimator, which is based on the units
that responded to both items. The latter estimator is included in the empirical study
presented in Section 4.

In this paper, we study the properties of ρ̂xyI , under the so-called nonresponse model
(NM) approach. Let P (rxi = 1, ryi = 1) ≡ prr, P (rxi = 1, ryi = 0) ≡ prm, P (rxi = 0, ryi =
1) ≡ pmr and P (rxi = 0, ryi = 0) ≡ pmm. Also, we assume that the sample units respond
independently of one another. Let x = (x1, ..., xN)′ and y = (y1, ..., yN)′, where xi and
yi denote the i-th value corresponding to items x and y, respectively. Under the NM
approach, we define the conditional nonresponse bias of ρ̂xyI as

BqI(ρ̂xyI) = EqEI {(ρ̂xyI − ρ̂xyπ|x,y, δ, r)|x,y, δ} ,

where the subscripts q and I denote respectively the unknown nonresponse mechanism
and the imputation mechanism used for the random selection of donors. To simplify the
notation, we write EI (ρ̂xyI |x,y, δ, r) ≡ ρ̃xyI in the remainder of the paper.

In order to study the properties of ρ̂xyI , we express its total error as:

ρ̂xyI − ρxy = (ρ̂xyπ − ρxy) + (ρ̃xyI − ρ̂xyπ) + (ρ̂xyI − ρ̃xyI) . (3)

The first term on the right hand side of (3) represents the sampling error, whereas the
second and the third terms represent the nonresponse error and the imputation error,
respectively. Note that the imputation error occurs solely from the random selection of
donors (see Section 3).

To obtain an asymptotically unbiased estimator of ρxy, we seek an imputation procedure
under which BqI(t̂kl,I)

.
= 0 for (k, l) ∈ {(1, 0), (1, 1), (0, 1)}. For the terms t10 and t01
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(i.e., the marginal first moments), it can thus be achieved with marginal random hot-
deck imputation. However, the cross-product term, t11, is more problematic since it is
a measure of the relationship between x and y. Marginal imputation, which consists of
imputing x and y separately, tends to attenuate the relationship between variables and,
as a result, introduces a bias that may be severe if the nonresponse rate is appreciable.
To deal with this issue, survey statisticians typically use an alternative version of random
hot-deck imputation, which consists of selecting a common donor at random from the set
srr of common donors (i.e., the set of sample units that responded to both items) when
both items are missing. Unfortunately, although this imputation procedure generates less
bias than marginal random hot-deck imputation, it does not succeed in eliminating it
completely, unless srm = smr = ∅. This point is further discussed in Section 3.1.

3 Imputation procedures

In this section, we describe three random imputation procedures: (i) random hot-deck
imputation (ii) joint random hot-deck imputation and (iii) balanced joint random hot-deck
imputation. For each procedure, the asymptotic bias of ρ̂xyI is examined.

3.1 Random hot-deck imputation procedure

Random hot-deck imputation may be described as follows:

(i) for i ∈ smr, missing xi is imputed by x∗i = xj, j ∈ srr ∪ srm such that

P (x∗i = xj) =
wj∑

k∈s wkrxk

;

(ii) for i ∈ srm, missing yi is imputed by y∗i = yj, j ∈ srr ∪ smr such that

P (y∗i = yj) =
wj∑

k∈s wkryk

;

(iii) for i ∈ smm, missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (xj, yj) , j ∈ srr such that

P {(x∗i , y∗i ) = (xj, yj)} =
wj∑

k∈s wkrxkryk

.

Under this imputation procedure, the relative conditional nonresponse bias of ρ̂xyI , RBqI (ρ̂xyI) =
BqI (ρ̂xyI) /ρ̂xyπ, can be approximated by

RBqI (ρ̂xyI)
.
= − (1− prr − pmm) , (4)

provided ρ̂xyπ 6= 0; see Chauvet and Haziza (2011). If ρ̂xyπ = 0 (i.e, the variables x and
y are unrelated), the imputed estimator ρ̂xyI is asymptotically qI-unbiased for ρ̂xyπ, as
expected. Expression (4) shows that the asymptotic bias is always negative and that it
vanishes if prm = pmr = 0, or equivalently, if srm = smr = ∅. In general however, this
imputation distorts the relationship between x and y.
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3.2 Joint imputation procedure

In this section, we introduce a simple joint imputation procedure. Let 1(.) be the usual
indicator function. The proposed method may be described as follows:

(i) for i ∈ smr, ε ∈ {0, 1}, missing xi is imputed by x∗i = xj, j ∈ srr such that

P (x∗i = xj |yi = ε) =

{
wj∑

k∈s wkrxkryk1(yk=ε)
if yj = ε

0 otherwise;

(ii) for i ∈ srm, ε ∈ {0, 1}, missing yi is imputed by y∗i = yj, j ∈ srr such that

P (y∗i = yj |xi = ε) =

{
wj∑

k∈s wkrxkryk1(xk=ε)
if xj = ε

0 otherwise;

(iii) for i ∈ smm, missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (xj, yj) , j ∈ srr such that

P {(x∗i , y∗i ) = (xj, yj)} =
wj∑

k∈s wkrxkryk

.

It is shown in the Appendix that BqI(ρ̂xyI)
.
= 0 under this imputation procedure. A

drawback of the proposed procedure is that it suffers from an additional variability, called
the imputation variance, due to the random selection of the donors. As a result, it is not
fully efficient, a term coined by Kim and Fuller (2004).

3.3 Balanced joint imputation procedure

To eliminate the imputation variance, we suggest selecting the donors at random so that
the imputation error in (3), ρ̂xyI − ρ̃xyI , is equal to zero. It suffices to select the donors
so that the following constraints are satisfied:

t̂kl,I = EI(t̂kl,I |x,y, δ, r), (5)

for any (k, l) ∈ {(1, 0), (1, 1), (0, 1)}. An imputation procedure that satisfies (5) has been
called balanced, a term coined by Chauvet, Deville and Haziza (2011).

We first introduce some further notation. Let

p̂kl =

∑
m∈s wmrxmrym1(xm = k)1(ym = l)∑

m∈s wmrxmrym

for any (k, l) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}, which represents the probability of imputing
(x∗i , y

∗
i ) = (k, l) when i ∈ smm. Also, for ε ∈ {0, 1} let

p̂x|y=ε =

∑
m∈s wmrxmrymxm1(ym = ε)∑

m∈s wmrxmrym1(ym = ε)
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which represents the probability of imputing x∗i = 1 when i ∈ smr and yi = ε, and

p̂y|x=ε =

∑
m∈s wmrxmrymym1(xm = ε)∑

m∈s wmrxmrym1(xm = ε)

which represents the probability of imputing y∗i = 1 when i ∈ srm and xi = ε.

Let us first consider the case (k, l) = (1, 0). We have

t̂10,I =
∑
i∈s

wirxixi +
∑
i∈s

wi(1− rxi)ryiyix
∗
i

+
∑
i∈s

wi(1− rxi)ryi(1− yi)x
∗
i +

∑
i∈s

wi(1− rxi)(1− ryi)x
∗
i . (6)

Furthermore, we have

EI

{∑
i∈s

wi(1− rxi)ryiyix
∗
i |x,y, δ, r

}
= p̂x|y=1

∑
i∈s

wi(1− rxi)ryiyi,

EI

{∑
i∈s

wi(1− rxi)ryi(1− yi)x
∗
i |x,y, δ, r

}
= p̂x|y=0

∑
i∈s

wi(1− rxi)ryi(1− yi), (7)

EI

{∑
i∈s

wi(1− rxi)(1− ryi)x
∗
i |x,y, δ, r

}
= (p̂10 + p̂11)

∑
i∈s

wi(1− rxi)(1− ryi).

From (6) and (7), it follows that t̂10,I = EI(t̂10,I |x,y, δ, r) if the following balancing
equations are satisfied:

∑
i∈s

wi(1− rxi)ryiyi(x
∗
i − p̂x|y=1) = 0,

∑
i∈s

wi(1− rxi)ryi(1− yi)(x
∗
i − p̂x|y=0) = 0,

∑
i∈s

wi(1− rxi)(1− ryi)(x
∗
i − p̂10 − p̂11) = 0.

Similar balancing equations may be derived for the cases (k, l) = (0, 1) and (k, l) = (1, 1) in
(5). After some algebra, we obtain that the constraints in (5) are satisfied if the imputation
procedure is such that (i) the two balancing equations (corresponding to imputation on
smr)

∑
i∈smr

wi

{
yi(x

∗
i − p̂x|y=1), (1− yi)(x

∗
i − p̂x|y=0)

}
= 0

are satisfied; (ii) the two balancing equations (corresponding to imputation on srm)
∑

i∈srm

wi

{
xi(y

∗
i − p̂y|x=1), (1− xi)(y

∗
i − p̂y|x=0)

}
= 0

are satisfied and (iii) the three balancing equations (corresponding to imputation on smm)
∑

i∈smm

wi {x∗i − p̂10 − p̂11, y
∗
i − p̂01 − p̂11, x

∗
i y
∗
i − p̂11} = 0

are satisfied. In other words, we perform the imputations separately on each of the sub-
samples smr, srm and smm.
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4 Simulation study

We conducted a limited simulation study to test the performance of the procedures de-
scribed in Section 3. We first generated 3 finite populations of size N = 10, 000, each
containing two binary variables of interest x and y. The variables x and y were generated
to obtain a population coefficient of correlation ρ equal to 0.3 for population 1, 0.5 for
population 2 and 0.7 for population 3. We were interested in estimating the marginal first
moments p10 and p01 as well as the population correlation coefficient ρxy given by (1).

From each population, we selected B = 1000 samples of size n = 500 according to simple
random sampling without replacement. Then, in each selected sample, nonresponse to
items x and y was generated according to

P (rxi = ε, ryi = η) = (prr)
εη (prm)ε(1−η) (pmr)

(1−ε)η (pmm)(1−ε)(1−η) (8)

with ε ∈ {0, 1} and η ∈ {0, 1}. We used three configurations, which we call mechanisms
1, 2 and 3, of the vector (prr, prm, pmr, pmm)′ . We used

(prr, prm, pmr, pmm) =





(0.2, 0.25, 0.25, 0.3) for mechanism 1,
(0.4, 0.15, 0.15, 0.3) for mechanism 2,
(0.6, 0.05, 0.05, 0.3) for mechanism 3.

We computed the imputed estimators of the marginal first moments p̂10,I and p̂01,I and the
imputed estimator of the correlation coefficient, ρ̂xyI , based on (i) the random hot-deck
imputation (RHDI) procedure described in Section 3.1; (ii) the proposed joint random
hot-deck imputation (JHDI) procedure described in Section 3.2 and (iii) the proposed
balanced random hot-deck imputation (BHDI) procedure described in Section 3.3. Also,
we computed the estimators of the marginal first moments and of the correlation coefficient
based on the complete cases (CC). Note that unlike the imputed estimators, the CC
estimators require the response flags to be available in the imputed data file and can not
be computed if these flags are not available.

As a measure of bias of a point estimator θ̂ of a parameter θ, we used the Monte Carlo
Percent Relative Bias (RB) given by

RB(θ̂) =
EMC(θ̂)− θ

θ
× 100, (9)

where EMC(θ̂) = B−1
∑B

b=1 θ̂(b) and θ̂(b) denotes the estimator θ̂ in the b-th sample,
b = 1, . . . , 1000.

Table 1 shows the Monte Carlo percent Relative Bias (RB) corresponding to p̂10,I , p̂01,I

and ρ̂xyI . For the marginal first moments p10 and p01, all the imputation procedures
and the complete case estimator led to negligible bias, as expected. Turning to the
coefficient of correlation ρxy, we note that its imputed estimator ρ̂xyI , was considerably
biased under RHDI in all the scenarios. Also, the bias was negative clearly illustrating
the problem of attenuation of relationships under this type of imputation procedure. This
is consistent with the bias expression (4). On the other hand, both JHDI and BHDI led
to negligible bias, showing that both procedures succeeded in preserving the relationship
between variables. Also, CC led to negligible bias as expected.
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Table 1: Monte-Carlo Relative Bias of the estimators
Population 1 Population 2 Population 3

p̂10,I p̂01,I ρ̂xyI p̂10,I p̂01,I ρ̂xyI p̂10,I p̂01,I ρ̂xyI

Mechanism 1
CC 0.00 -0.25 0.13 0.03 -0.07 0.76 -0.19 -0.23 -0.14

RHDI 0.06 -0.19 -49.64 -0.10 -0.16 -49.61 -0.25 -0.21 -50.20
JHDI -0.10 -0.10 0.28 0.02 -0.12 0.88 -0.19 -0.20 0.00
BHDI -0.09 -0.08 0.39 0.03 -0.10 0.98 -0.24 -0.19 0.04

Mechanism 2
CC -0.11 -0.04 -0.24 0.22 0.13 -0.13 -0.13 0.09 0.21

RHDI -0.05 0.00 -30.37 0.30 0.12 -30.17 -0.03 0.14 -29.93
JHDI -0.03 0.06 -0.89 0.29 -0.01 -0.40 -0.07 0.07 0.42
BHDI -0.06 -0.01 -0.16 0.29 0.08 -0.04 -0.04 0.01 0.25

Mechanism 3
CC -0.29 0.11 0.41 0.00 -0.17 -0.46 0.15 0.01 -0.10

RHDI -0.27 0.17 -10.10 -0.01 -0.15 -10.64 0.11 0.04 -10.15
JHDI -0.28 0.12 0.38 0.03 -0.16 -0.71 0.19 0.02 -0.07
BHDI -0.29 0.10 0.45 0.01 -0.21 -0.46 0.18 -0.03 -0.08

We then compared the efficiency of JHDI and BHDI. Let θ̂JHDI and θ̂BHDI denote the
estimator θ̂ under JHDI and BHDI, respectively. As a measure of Relative Efficiency
(RE), we used

RE =
MSEMC(θ̂(.))

MSEMC(θ̂(JHDI))
, (10)

MSEMC(θ̂) is the Monte Carlo mean square error of θ̂.

Table 2 shows the RE corresponding to t̂10,I , t̂01,I and ρ̂xyI . It is clear that the imputed
estimators under BHDI were significantly more efficient than those obtained under JHDI
in all the scenarios, with values of RE ranging from 0.78 to 0.87. The CC estimators were
also more efficient than the imputed estimators under JHDI in all the scenarios, with
values of RE ranging from 0.64 to 0.89. For mechanisms 2 and 3, BHDI and CC led to
very similar results. For mechanism 1, the CC estimators were more efficient than those
obtained under BHDI. These results can be explained by the fact that, since prr = 0.2
for mechanism 1, the number of common donors was rather small. Consequently, both
JHDI and BHDI used only a subset of the set of common donors in order to perform the
imputations, which contributed to the variability of the imputed estimators. On the other
hand, the CC estimators were computed using all the units in the set of common donors.

5 Application to the French Wealth Survey

In this section, we apply the proposed imputation procedures in the context of the FWS.
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Table 2: Monte-Carlo Relative Efficiency of the imputed estimators

Population 1 Population 2 Population 3
p̂10,I p̂01,I ρ̂xyI p̂10,I p̂01,I ρ̂xyI p̂10,I p̂01,I ρ̂xyI

Mechanism 1
CC 0.67 0.66 0.86 0.67 0.64 0.84 0.73 0.80 0.86

BHDI 0.86 0.87 0.86 0.85 0.80 0.85 0.83 0.87 0.86

Mechanism 2
CC 0.78 0.77 0.81 0.78 0.81 0.81 0.84 0.88 0.78

BHDI 0.82 0.83 0.81 0.80 0.82 0.82 0.80 0.83 0.78

Mechanism 3
CC 0.78 0.81 0.78 0.83 0.81 0.81 0.82 0.89 0.79

BHDI 0.79 0.82 0.78 0.84 0.80 0.82 0.80 0.87 0.80

5.1 Methodology of the French Wealth Survey

To reduce nonresponse as much as possible, the FWS questionnaire is divided into two
main parts. The first part draws the inventory of all the assets held by the interviewed
household (e.g., financial assets, housing wealth, business wealth, indebtedness). Item
nonresponse was rather uncommon for the variables included in the first part, concerning
twenty or so households. The second part collects a detailed description of the listed
assets (e.g., securities accounts’ characteristics, life annuities’ characteristics, number of
assets of each kind, amount on each asset). The variables included in the second part
were heavily prone to item nonresponse, due to greater difficulties for the households to
describe the assets.

It is well known that the distribution of most variables related to wealth are highly
skewed since only a small fraction of the French households are very wealthy. In order to
obtain accurate estimates, it is thus important to interview enough "wealthy households".
To that end, the population was stratified using some auxiliary variables related to the
variables of interest. For metropolitan France and Reunion, tax income registers were
used as the sampling frame. For the French West Indies, the samples of the New Census
were used as the sampling frame since the corresponding tax income registers were judged
to be insufficiently reliable.

At the end of the data collection stage, approximately 20,000 households were selected
in the sample and approximately 15,000 households completed the questionnaire to its
very end. The FWS weighting process can be described as follows: to compensate for
unit non-response, the basic weights (which are defined as the inverse of the sample
inclusion probabilities) of the responding households were adjusted using the inverse of
the estimated response probabilities. These estimated probabilities were computed within
weighting classes formed on the basis of auxiliary variables available for both responding
and nonresponding households. The resulting adjusted weights were further adjusted
using a calibration procedure. The calibration variables included the type of location of
the dwelling, the age, degree and occupation of the household’s reference person, the type
of family, the income of the household and the number of people of each age bracket and
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gender.

Imputation was performed independently within classes. Three imputation classes were
used: the first class consisted of overseas population, the second one of wealthy individuals,
whereas the third one consisted of the remaining individuals.

5.2 Imputation of the securities accounts’ characteristics

In France, two types of securities accounts are distinguished: (i) the comptes-titres (CT),
that is, classical accounts which enable owning bonds, stocks and mutual funds; (ii) the
Plans Epargnes en Actions (PEA), which are special accounts limited to European Union
investments and profit by a fiscal allowance. Note that an individual cannot own more
than one PEA.

One of the important objectives of the FWS lies in estimating the proportion of households
owning each type of assets, and in particular, the proportion of households owning stocks.
The presence (and possibly, the proportion) of stocks is also a measure of the true risk
involved by the detention of the securities account. In addition, the households are also
asked about the risk tolerance of their securities accounts, which measures, to a certain
extent, the perception of the risk they incur by holding this asset. The incurred risk is
important to determine whether the recent financial crisis has curbed down the propensity
to invest in risky assets. Moreover, the link between the part of stocks and the risk
tolerance measures the gap between the perception and the reality of the incurred risk.

The variable of stock owning consists in two categories: with stocks, or without stocks.
The risk tolerance consists in three categories: no risk, medium risk and high risk. Due
to a bad implementation of a filter question, none of the households was asked the risk
tolerance for their CT, whereas it was asked for the PEAs. For imputation purposes,
both types of securities accounts (CT and PEA) were put together, in order to use the
characteristics of the PEA to impute the CT.

The variables of stock owning and the risk tolerance of both types of securities accounts
were imputed jointly. Due to a high nonresponse rate (among the 7, 073 securities accounts
in the sample, there were 3, 562 missing values for risk tolerance only, 113 for presence
of stocks only, and 77 for both), we focused on whether or not the securities account are
risky. Thus, the risk tolerance was recoded into two categories, indicating if the securities
account is risky or not.

To fill in the missing values, the three imputation methods described in Section 3 were
used. In addition, we computed the complete case estimates which are based on the
responding units only. The results are shown in Table 3. We note that the complete
case estimates as well as JHDI and BHDI led to similar results with correlation values
ranging between 15.9% and 17.9%. On the other hand, the coefficient of correlation under
RHDI was substantially smaller with a value equal to 7.8%, illustrating the attenuation
of relationships.
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Table 3: Proportion of securities accounts with stocks, proportion of risky accounts and
coefficient of correlation between stock owning and risk, with estimation based on complete
cases or on three imputation procedures

Percent of accounts Coefficient of correlation
with stocks with risk

Complete case 0.749 0.210 0.167
RHDI 0.729 0.203 0.078
JHDI 0.731 0.202 0.159
BHDI 0.728 0.203 0.179

5.3 Imputation of life-annuities’ characteristics

Life-annuities is the most common type of risky assets in France, with approximately
34.5 % of French households owning one. In what follows, we focus on life-annuities that
contain market assets.

The variable giving the proportion of stocks in the investment consists in five categories:
less than one third (A), between one third and one half (B), between one half and two
thirds (C), more than two thirds and less than one (D), equal to one (E). The variables
giving the part of stocks in the investment and the risk tolerance (in three categories) are
imputed jointly. Among the 4,832 life annuities containing market assets, there were 784
missing values for the risk tolerance, 93 for the part of stocks and 510 for both. These
rates of missing information were considered low enough to keep the risk tolerance into
three categories.

To fill in the missing values, we used RHDI, JHDI and BHDI, see Section 3. Table 4 shows
the estimated proportions and Spearman’s rank coefficient of correlation. As before, we
note that the complete case estimate, JHDI and BHDI led to very similar results in all
the scenarios. On the other hand, the estimate obtained under RHDI imputation was
significantly smaller.

6 Concluding remarks

In this paper, we considered the problem of preserving the relationship between categorical
variables when imputation was used to compensate for the missing values. We proposed
a simple joint imputation procedure that succeeds in preserving the relationship between
two categorical variables, unlike random hot-deck imputation. We also proposed a fully
efficient version of the proposed joint imputation procedure. Simulation results clearly
demonstrated the good performance of both methods in terms of bias. Also, the balanced
random hot-deck imputation procedure was found to be significantly more efficient than
the joint random hot-deck imputation procedure.
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Appendix: Asymptotic unbiasedness under the joint im-
putation procedure

In this section, we show that BqI (ρ̂xyI)
.
= 0. To that end, we need to show that

BqI

(
t̂kl,I

) .
= 0 for (k, l) ∈ {(1, 0), (1, 1), (0, 1)}. We start by showing that EqI

(
t̂10,I

) .
=

t̂10,π. The proof corresponding to t̂01,I is similar. It follows from (6) and (7) that

t̃10,I =
∑
i∈s

wirxixi + p̂x|y=1

∑
i∈s

wi(1− rxi)ryiyi

+ p̂x|y=0

∑
i∈s

wi(1− rxi)ryi(1− yi) + (p̂10 + p̂11)
∑
i∈s

wi(1− rxi)(1− ryi).

Taking expectation with respect to the nonresponse model, we obtain

Eq

(
t̃10,I |x,y, δ

) .
= (prr + prm)

∑
i∈s

wixi

+ pmr

∑
i∈s

wixiyi + pmr

∑
i∈s

wixi(1− yi)

+ pmm

{∑
i∈s

wixi(1− yi) +
∑
i∈s

wixiyi

}

= (prr + prm + pmr + pmm)
∑
i∈s

wixi

= t̂10,π.

We now show that EqI

(
t̂11,I

) .
= t̂11,π. First, we write t̂11,I as

t̂11,I =
∑
i∈s

wirxiryixiyi

+
∑
i∈s

wi(1− rxi)ryiyix
∗
i +

∑
i∈s

wi(1− ryi)rxixiy
∗
i

+
∑
i∈s

wi(1− ryi)(1− rxi)x
∗
i y
∗
i .

It follows from (7) and

EI

{∑
i∈s

wi(1− ryi)rxixiy
∗
i |x,y, δ, r

}
= p̂y|x=1

∑
i∈s

wi(1− ryi)rxixi,

EI

{∑
i∈s

wi(1− rxi)(1− ryi)x
∗
i y
∗
i |x,y, δ, r

}
= p̂11

∑
i∈s

wi(1− rxi)(1− ryi)

that

t̃11,I =
∑
i∈s

wirxiryixiyi

+ p̂x|y=1

∑
i∈s

wi(1− rxi)ryiyi + p̂y|x=1

∑
i∈s

wi(1− ryi)rxixi

+ p̂11

∑
i∈s

wi(1− rxi)(1− ryi).
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This leads to

Eq

(
t̃11,I |x,y, δ

) .
= prr

∑
i∈s

wixiyi

+ pmr

∑
i∈s

wixiyi + prm

∑
i∈s

wixiyi

+ pmm

∑
i∈s

wixiyi

= t̂11,π.
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