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We propose a uni�ed framework for de�ning measures of industrial concentration based on micro-
geographic data. These encompass the Duranton-Overman and the Marcon-Puech indices. We
discuss the basic requirements for such measures introduded by Duranton and Overman (2005) and
we propose �ve additional requirements. We describe several types of concentration depending on
the second order characteristics of the marginal patterns of positions and of marks but also on their
mutual dependence. We also discuss the null assumptions classically used for testing aggregation
of a particular sector. The framework we propose is based on some second order characteristics of
marked spatial point processes discussed in Illian et al. (2008). The general measure involves a
cumulative and a non-cumulative version. This allows us to propose an alternative version of the
Duranton-Overman index with a proper baseline as well as a cumulative version of this index.
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1 Introduction

Krugman's theory of economic geography states that �instead of spreading out evenly around the
world, production will tend to concentrate in a few countries, regions, or cities, which will become
densely populated but also have higher levels of income.� Empirical evidence brings out that jobs
and industries are highly clustered in a limited number of regions.There are several forces that induce
economics agglomeration. First of all, plants locate near to each other because of agglomeration
spillovers (localization economies and urbanization economies) or local amenities. Returns to scale
induce industries to concentrate their production in a small number of business units → and there
is interdependence between �rm's location choice (snowball e�ect mechanism). Note that imilar
questions arise in other disciplines: for example in ecology when studying spatial concentration of
biomass.

There are numerous motivations for studying the geographic concentration of economic sectors.
Such a measure allows to understand the determinants of localization, compare di�erent sectors with
respect to agglomeration/dispersion and predict the evolutions of localization. A similar question is
that of co-localization and interactions between sectors for which measures can be generally derived
from the former. Another related issue is cluster detection but we do not include this problem in
the present paper.

Until 2000, all studies about geographic concentration of economic activity use areal data for
measuring spatial concentration. The localization of �rms is not available and data consists only
in counts aggregated on administrative zones. There is a large literature on this topic and many
measures including the Her�ndahl index, the locational Gini index (which is the Gini index of
the localization ratio), the Ellison-Glaeser index, the Maurel-Sédillot's index and many others.
However these measures depend upon the aggregation level (Modi�able Areal Unit Problem) and



most importantly they do not take geography into account: a permutation of the sites does not
a�ect the measure !

A new vein of this literature arises in 2002 considering the treatment of micro-geographic data.
This type of data usually consists in the precise location of �rms together with a size measure
such as the number of employees. Duranton, G. and Overman, H.G. (2005) introduce a measure
based on the distribution of inter-distances between �rms. Marcon, E. and Puech, F. (2002, 2010)
introduce another measure based on Ripley's K-function. Combes P-J., Meyer T., and Thisse J-F.
(2008) survey this literature. Espa, Giuliani and Arbia (2010) use a model-based approach to assess
concentration. Duranton et Overman (2002) list �ve properties that a good measure of industrial
concentration should satisfy

1. DO1 The index must be comparable from one sector to the other (should not depend upon
the number of �rms in the sector)

2. DO2 The index must take into account the overall manufacturing geographical pattern

3. DO3 The index must take into account the structural di�erences of a particular sector /
country

4. DO4 The index must be independent of the geographical scale of observation

5. DO5 The index must be assorted with a level of statistical signi�cance

DO2 means that the benchmark should not be spatial homogeneity because obviously geographic
and demographic factors in�uence industrial location. DO3 `means that one should take into account
�rm's sizes in the measure. DO4 is related to the MAUP. In this paper, we introduce �ve additional
requirements namely

1. BTA1 The index must be an empirical measure associated to a well identi�ed theoretical
characteristic. This last point is not satis�ed by the current candidates in the literature. This
point may allow to satisfy DO5 without using Monte Carlo methods.

2. BTA2 The index must take into account spatial inhomogeneity of a particular sector (for
example �shing)

3. BTA3 The index must take into account a possible inhomogeneity of the distribution of �rm's
sizes in space.

4. BTA4 The index must have a known and constant benchmark in the absence of concentration.

5. BTA5 For testing concentration, a null hypotheses must be correctly speci�ed.

Note that the Duranton-Overman index as well as the Marcon-Puech index are both inspired
from the marked point process theory. However none of them corresponds to a well identi�ed
statistical parameter. This weakness relates to the absence of clear de�nition of the theoretical
meaning of spatial concentration only introduced through empirical measures. We intend to �ll this
gap and make progress in the understanding of spatial concentration. None of the cited measures
takes satis�es BTA2 neither BTA3. With respect to BTA4, the Marcon-Puech index has a constant
benchmark but not the Duranton-Overman's one.

In section 2, we present the mathematical tools of the spatial point process theory. In section
2.4, we introduce several types of spatial concentration.
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2 The relevance of random spatial point patterns theory

2.1 The theoretical model

Spatial distribution of �rms together with their sizes can be modeled using random spatial point
patterns associated with a mark (the size, the sector). Spatial point processes (PP) are models for a
random spatial con�guration of a random number of points N (for us:location of �rms for di�erent
industrial sectors). Two important aspects of their description are spatial inhomogeneity and spatial
interaction. Spatial Inhomogeneity relates to the fact that some regions may have a mean number
of points higher than others, for example when studying the spatial distribution of population,
mountainous zones may be less populated. Spatial interaction relates to the dependence between
points locations pairs. For example, the competition for food may generate repulsion between
animals positions, whereas when looking at infectious disease cases, contagion generates attraction
between spatial occurrences of a disease. One talks about a Marked PP when a random mark is
associated to each position (for us: number of employees + sector).

Let X be a subset of R2, a con�guration of n points of X is a non ordered set of n points x =
{x1, · · · , xn}. A PP model is a model for a random con�guration with a random countable number
N of points (possibly zero or in�nity), repetitions being allowed. Two mathematical approaches
exist for this theory: they are based on locally �nite random sets of points of X or alternatively
on random measures on X and we refer the reader to Moller and Waagepetersen (2004) or to Illian
et al.(2008) for precise de�nitions and properties. A PP is stationary if its law is invariant under
translations of the con�gurations. A PP is isotropic if its law is invariant under the rotations of
the con�gurations. Figure 2.1 illustrates the notion of non stationarity on the left pane, the notion
of anysotropy on the central panel and the absence of interaction on the right panel.

Let M be a space of �marks� and for each con�guration X let mX be a random variable with
values in M . Then one says that (X,mX) is a marked PP with mark space M . In practice,
we consider the case M �nite, or M subset of Rp. Marks can be dependent or not from positions.
The �Random labeling� hypotheses means that marks are independent from positions. Figures 2.1
and 2.1 show examples of realizations of such processes. On the right of Figure 2.1, the process
is a Homogeneous Poisson process which is the model for homogeneity and absence of interaction
between points. On the left of Figure 2.1 is an aggregated process which means that there is
interaction and it is of the attraction kind. On the left of Figure 2.1 is a regular process which
means that there is interaction and it is of the repulsion kind and on the right of Figure 2.1 is a
marked PP with circles showing the mark through their radius.
The order 1 characteristic of a PP is given by the intensity. Let NX(B) be the number of points of
PP X in B. The intensity measure is dce�ned by

Λ(B) = E(NX(B)).

When Λ is absolutely continuous with respect to the Lebesgue measure, one can write

Λ(B) =

∫
B
λ(u)du,

Figure 1: From left to right: non stationarity, anisotropy and absence of interaction
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Figure 2: Aggregated PP (left) and Homogeneous Poisson PP (right)

where the intensity function can be interpreted as follows: λ(u)du is the probability of occur-
rence of a point in the in�nitesimal ball of center u and radius du, or the limit

λ(x) = lim
|dx|−→0

E(NX(dx))

| dx |
,

where | dx | is the volume of dx.
There is a relationship between the density of points regarded as i.i.d. realizations of a measure

and the intensity: the intensity is the product of the density by the total expected number of points.
The order 2 characteristics of a PP can be speci�ed by the order two factorial moment measure

(the mean number of points pairs with a point in A and the other in B):

Λ(2)(A×B) = E(
∑

u,v∈X:u6=v
1(u ∈ A, v ∈ B))

When Λ(2) is absolutely continuous with respect to the Lebesgue measure, one can write

Λ(2)(A×B) =

∫
A

∫
B
λ(2)(u, v)dudv

where λ(2)(u, v)dudv can be interpreted as the probability of joint occurrence of a point in the
in�nitesimal ball of center u with radius du and of a point in the in�nitesimal ball of center v and
of radius dv, or the limit

λ(2)(x, y) = lim
|dx|−→0,|dy|−→0

E(NX(dx)NX(dy))

| dx || dy |

Another way of characterizing the second order structure is through the pair correlation function
which is de�ned by

g(x, y) =
λ(2)(x, y)

λ(x)λ(y)
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Figure 3: Regular PP (left) and Inhomogeneous Poisson PP (right)
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with the convention a
0 = 0 if a ≥ 0.

A PP is said to be "second order reweighted stationarity" when g is translation invariant.
At last, a third way of characterizing the second order structure is through the Ripley's K function.
If X is �second order reweighted stationary� and isotropic, the Ripley's K function is de�ned by

K(r) = π

∫ r

0
ug(u)du,

In this case, λK(r) is the mean number of points within radius r of the origin given that the origin
belongs to the con�guration.
The assumption of complete spatial randomness (CSR) is embodied by the Poisson homogeneous
process (PPP) for which we have

K(r) = πr2 and g(r) ≡ 1.

A scaled version of the K-function is sometimes used and called the L-function L(r) =

√
K(r)
π −r.

2.2 The estimators of theoretical characteristics

In the isotropic and homogeneous case, one can estimate the intensity by

λ̂(x) =
N

| X |
and the Ripley's K-function by

K̂(r) =
| X |

N(N − 1)

∑
i 6=j

wi,j1(‖ xi − xj ‖≤ r)

where wi,j is a boundary correction factor.
In the isotropic inhomogeneous case, one can estimate the intensity by

λ̂(x) =
∑
ξ∈X

κ((x− ξ)/h)/h

and the Ripley's K-function by

K̂inhom =
1

| X |
∑
i 6=j

wi,j,r
1(‖ xi − xj ‖≤ r)

λ̂(xi)λ̂(xj)

where wi,j,r is a boundary correction factor. The following is an estimator of the pair correlation
function

ĝ(r) =
1

2πr

n∑
i=1

∑
j 6=i

wi,j,r
h−1κ

(
r−‖xi−xj‖

h

)
λ̂(xi)λ̂(xj)

.

Figure 2.2 shows three processes, from left to right a regular, a Homogeneous Poisson, and an
aggregated process. A circle centered on a con�guration point illustrates the fact that the K-
function counts mean the number of points within a given radius of a point in the con�guration.
The last panel shows the corresponding L-functions and we see that the regular process has an
L-function below 1, the aggregated process above 1 and the Homogeneous Poisson is very near 1.
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2.3 Use of the K-function to test complete spatial randomness

Even though we said that CSR was not a good benchmark for studying spatial concentration of
industry, we will here illustrate how the Ripley's K-function is used to test for CSR. The reason
for showing this is that this methodology will inspire the technique we introduce later on in the
paper. Figure 2.3 shows a realization of a inhomogeneous Poisson process on the left panel. The
central panel shows the ordinary K-function and the right panel the inhomogeneous K-function:
both are displayed together with an empirical envelope obtained by Monte Carlo simulations of
a process with the same intensity under the CSR assumption. The central K-curve is out of the
envelope whereas the right K-curve is inside the envelope: the reason is that the estimation of
the K-function in the central panel does not take into account inhomogeneity whereas this is done
using the inhomogeneous K estimator on the right panel. This allows to conclude that the fact that
the curve is outside the envelope in the central panel is not due to interaction but rather due to
inhomogeneity. A parallel can be done with a time series situation when the unaccounted presence
of a trend may reveal a wrong serial correlation.

2.4 Characteristics of a marked PP

Let (X,M) be a marked PP, homogeneous for positions, and let f(m1,m2) be a weighting function,
we de�ne a weighted version of α(2) by

α
(2)
f (A×B) = E

 ∑
u,v∈X:u6=v

f(m1,m2)1IA(u)1IB(v)

 .
When α(2) is absolutely continuous wrt the Lebesgue measure, one can write

α
(2)
f (A×B) =

∫
A

∫
B
ρ
(2)
f (u, v)dudv

then ρ
(2)
f is called second order product density of X for weighting scheme f .

3 The di�erent faces of spatial concentration

In this section, we want to discuss the de�nition of spatial concentration and distinguish between
several types. Figure 3 shows two examples of spatially concentrated marked processes. In the left
panel, the marks are constant, the point process is an inhomogeneous Poisson PP and the concen-
tration aspect of the con�guration is due to the inhomogeneity of positions and not to interaction.
In the right panel,

Figure ?? shows three examples of spatially concentrated marked processes. In the left panel,
the marks are constant and the concentration aspect of the con�guration is due to aggregation
between the points. In the central panel, the marks are called constructed marks: they are equal

h
0 0.1 0.2 0.3 0.4 0.5

0

Figure 4: From left to right: Regular PP, PPP, Aggregated PP and L-functions
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Figure 5: Use of K to test CSR
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Figure 6: The di�erent faces of concentration: order 1 concentration

to the number of neighbors at dist ≤ 0.1 and the concentration is due to the correlation between
marks and point positions. In the right panel, the marks are also constructed marks but now they
are equal to the distance between each point and its nearest neighbor, the concentration is therefore
also due to the correlation between marks and point positions.

4 Indices based on inter-points distances

4.1 The Duranton-Overman and the Marcon-Puech indices

The Duranton-Overman index (Duranton and Overman, 2005) and the Marcon-Puech index (Mar-
con and Puech, 2002, 2010) are both based on inter-point distances. The Duranton-Overman index
is a non cumulative index de�ned by

iDO(r) =

∑
i

∑
j 6=i h

−1w
(
r−‖xi−xj‖

h

)
mimj∑

i

∑
j 6=imimj

When the mark is a count, which is the case for the number of employees, it can be compared
to the Parzen-Rosenblatt density estimator associated to a replicated point process of positions
(number of replications equal to the mark) considering that the points positions are i.i.d.

Marcon and Puech note that iDO does not account for order 1 inhomogeneity. They propose to
perform this correction by using the union of all the available sectors. No correction is then possible
if only one sector is available. The Marcon-Puech index is a cumulative index de�ned by

IMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

/

Ns∑
i=1

∑Ns
j=1,j 6=imj∑N
j=1,j 6=imj

∀r > 0,

IMP (r) > 1 indicates that there are proportionally more employees close to plants of sector s within
a radius r than in the whole area. Note that IMP (r) can be written JMP (r)/JMP (∞) where

JMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

.
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Figure 7: The di�erent faces of concentration: order 2 concentration

JMP (r) is the average proportion of employees of sector s within a given radius r.

4.2 The weaknesses of the Duranton-Overman and the Marcon-Puech indices

Both in the Duranton-Overman and the Marcon-Puech framework, the simulations are done con-
ditionally upon the positions and marks (sector + number of employees) are randomly reassigned
to the observed positions. This simulation framework is not compatible with BTA3. There are a
number of other drawbacks namely

1. there are no theoretical characteristics clearly associated to these indices (cf BTA1)

2. the possible dependence between marks and positions is not incorporated in the index formula
(cf BTA3)

3. DO does not take into account inhomogeneity of location intensity (cf BTA2)

4. no clear benchmark for DO (cf BTA4)

5. no edge correction (implies bias for large r)

6. underlying assumption that all sectors are issued from the same type of process ("overall
manufacturing")(cf simulations under H0)

5 Another step towards a uni�ed theory

In this section, we present theoretical characteristics of spatial marked point processes which will
allow us to cast the previous two approaches in a same mould and to correct their weaknesses.

5.1 The theoretical characteristics

In the non stationary case, for any weight function k, we introduce an order one characteristic called
the weighted intensity measure αk

αk(D) = E
∑
u∈X

k(m)1ID(u).

For k(m) = m, αk(D) is the expected number of employees in D whereas Λ(D) was the expected
number of �rms inD. If αk(D) =

∫
D λk(u)du then λk is the weighted intensity function for weighting

function k.
For order, let k and q be two weighting functions, and for a multiplicative scheme f(m1,m2) =

k(m1)q(m2) we introduce the weighted measure β
(2)
f , corresponding to the unweighted α(2),

β
(2)
f (A×B) = E

 ∑
u,v∈X:u6=v

f(m1,m2)

λk(u)λq(v)
1IA(u)1IB(v)
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with λk(x) > 0 and λq(x) > 0 ps for all x ∈ A. If β(2)f (A × B) =
∫
A

∫
B gf (u, v)dudv then gf is

the weighted pair correlation function for weighting function f .
Note that these characteristics are introduced and studied in the homogeneous case by Schlater
(2001) and Illian et al. (2008).

5.2 The Bonneu-Thomas-Agnan index: non cumulative version

For all r > 0, we introduce the non-cumulative Bonneu-Thomas-Agnan index by

iBT (r) = ĝf (r) =
1

2πr

N∑
i=1

N∑
j=1,j 6=i

h−1w
(
r−‖xi−xj‖

h

)
k(mi)q(mj)

|A ∩ (A− xi + xj)|λ̂k(xi)λ̂q(xj)

with
λ̂k(x) = λ̂(x) ˆE[k(M)|X]

Our index is an estimator of the theoretical gf characteristic. It is important to note that this index
can be calculated under the assumption of homogeneity of the intensity of positions as well as under
the assumption of inhomogeneity using one of the two estimators of the intensity and this leads to
two versions of our index called BThom and BTinhom thereafter.
For the estimations, for a given sector, we estimate :
1) The intensity of positions λ is estimated locally by a non parametric kernel method or by an non
parametric iterative and adaptative method based on Voronoï cells.
2) The expectation of the mark conditionally on the position is estimated by a non-parametric
kernel method or by an non parametric iterative and adaptative method based on Voronoï cells.
The strategy we propose is to use for null hypotheses a Poisson point process for positions with
marks depending only on their own position. It is the only one under which it is easy so simulate
realizations. For the simulations under H0, we �rst generate a realization of a Poisson PP with
the same intensity as in the estimation step. Then for each point of the realization, we estimate
the conditional cumulative distribution function of the mark conditionally on the position by a
non-parametric kernel method. We then simulate a mark realization from this empirical cumulative
distribution function.

5.3 The Bonneu-Thomas-Agnan index: cumulative version

For a given multiplicative weighting scheme, a corresponding cumulative version of this index is
given by the following estimator of the weighted K-function

IBT (r) = K̂f (r) =
N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|A ∩ (A− xi + xj)|λ̂k(xi)λ̂q(xj)

pour tout r > 0.

5.4 Consequences for the Duranton-Overman index

We establish a link between the Duranton-Overman index and a theoretical characteristic gf (the
weighted pair correlation function) for the following choice of weighting scheme k(m) = m and
q(m) = m

iDO(r) =
2πr

|A|
ĝf (r).

Hence we derive a natural normalization of this index with a clear benchmark: under H0 we have
gf ≡ 1
We can also propose a cumulative version of this index

IDO(r) =

∑∑
j 6=imimj1I(‖xi − xj‖ ≤ r)∑∑

j 6=imimj
=
K̂f (r)

|A|

9



Figure 8: Scenario 1: one realization

K̂f (r) = |A|
∑∑

j 6=imimj1I(‖xi − xj‖ ≤ r)∑∑
j 6=imimj

5.5 Consequences for the Marcon-Puech index

Comparing

JMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

and

IBT (r) = K̂f (r) =
N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|A ∩ (A− xi + xj)|λ̂k(xi)λ̂q(xj)

.

for k(m) = m and q(m) = 1, we understand that the correction for inhomogeneity of the location
intensity of sector s is missing in the MP index.

5.6 Testing strategy

6 Simulation results

The framework of our simulations is the following. We simulate two sectors, non necessarily of the
same type (random, aggregated, regular).

We compare

• the normalized DO index (non cumulative version)

• the cumulative MP index

• the indices BThom and BTinhom (non cumulative versions)

They all have a benchmark of 1 under H0.

6.1 Results for scenario 1

Scenario 1 is composed of two sectors :the �rst one is homogeneous Poisson with constant marks
and the second is an aggregated process with constant marks. Figure 6.1 presents one realization
of these two point processes.
On Figures 6.1 and 6.1, we observe that the indices DO and MP detect a concentration of sector
2. The indices BThom and BTinhom correctly detect that the origin of concentration of sector 2
comes from the second order.

10
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Figure 9: Scenario 1: results for DO (�rst row) and MP (second row)

6.2 Results for scenario 2

Scenario 2 is composed of two sectors :the �rst one is homogeneous Poisson with random marks
independent from positions.The second one is also homogeneous Poisson with marks depending
upon the positions. Figure 6.2 presents one realization of these two point processes.

On Figure 6.2, we see that the index DO detects concentration for sector 2 and MP does not
detect anything.

On Figure 6.2, we see that the index BThom detects concentration and BTinhom does not,
hence the origin of the concentration of sector 2 comes from the �rst order.

6.3 Results for scenario 3

Scenario 3 is composed of two sectors :the �rst one is homogeneous Poisson with constant marks
and the second one is not a Poisson process, it is described in Baddeley, Moller and Waagepetersen
(2000) and is such that gf = 1. Figure 6.3 presents one realization of these two point processes.

On Figure 6.3, we see that the indices DO and MP do not detect any concentration for sector
2.

On Figure 6.3, we see that the indices BThom and BTinhom do not detect any concentration for
sector 2 and this is of course a limitation of this approach. However if a process satis�es gf = 1 for
a particular weighing scheme, it is unlikely that it satis�es the same for another choice of weighing
scheme so this could be a way out by testing for two di�erent choices.

7 Conclusion

The BT index satis�es the ten objectives DO1 to DO5 and BT1 to BT5. It is clear that an
extension can be easily derived to study co-localization. As the MP and the DO index, the BT
index depends upon the distance r: this can be viewed as an advantage because it is a richer tool or
as a disadvantage because it is more complex to handle. Some more work should be done to study
the in�uence of the choice of weighting scheme.
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Figure 10: Scenario 1: results for BThom (�rst row) and BTinhom (second row)
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Figure 11: Scenario 2: one realization

References

[1] Duranton, G. and Overman, H.G. (2005) Testing for localization using micro-geographic data.
Review of Economic Studies 72 1077-1106.

[2] Illian, J., Illian P, Stoyan H. and Stoyan D. (2008) Statistical analysis and modelling of spatial
point patterns, Wiley, Statistics in practice.

[3] Marcon, E. and Puech, F. (2002) A new method to evaluate spatial economic activity and its
application to two french areas, preprint.

[4] Marcon, E. and Puech, F. (2010) Measures of the geographic concentration of industries :
improving distance-based methods. Journal of Economic Geography 10(5) 745-762.

[5] Moller, J. et Waagepetersen, R.P. (2004) Statistical inference and simulation for spatial point

processes. vol. 100. Chapman & HallCRC.

[6] Schlather, M. (2001) On the second-order characteristics of marked point processes. Bernoulli
7(1) 99-117.

12



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

seqr

ID
O

 *
 A

re
a/

(2
 *

 p
i *

 s
eq

r)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

seqr

ID
O

 *
 A

re
a/

(2
 *

 p
i *

 s
eq

r)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

seqr

IM
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

seqr

IM
P

Figure 12: Scenario 2: results for DO (�rst row) and MP (second row)
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Figure 13: Scenario 2: results for BThom (�rst row) and BTinhom (second row)
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Figure 14: Scenario 3: one realization
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Figure 15: Scenario 3: results for DO (�rst row) and MP (second row)
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Figure 16: Scenario 3: results for BThom (�rst row) and BTinhom (second row)
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