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1 Introduction

Measuring change over time is a central problem for many users of social, economic
and demographic data and is of interest in many areas of economics and social sciences.
Smith et al. [17] recognised that assessing change is one of the most important challenges
in survey statistics. The primary interest of many users is often in changes or trends from
one time period to another. A common problem is to compare two cross-sectional esti-
mates for the same study variable taken on two different waves or occasions. These cross-
sectional estimates often include imputed values to compensate for item non-response.
The estimation of the sampling variance of the estimator of change is useful to judge
whether the observed change is statistically significant. Covariances play an important
role in estimating the variance of a change.

We propose to use a multivariate linear regression approach to estimate covariances.
The proposed estimator is not a model-based estimator, as this estimator is valid even if
the model does not fit the data (Berger & Priam [4]). We show how this approach can
be used to accommodate the effect of imputation. The regression approach gives design-
consistent estimation of the variance of change when the sampling fraction is small and the
finite population corrections are negligible. We illustrate the proposed approach for hot-
deck imputation, although the proposed estimator can be also used for other imputation
techniques.

The estimation of variance of change would be relatively straightforward if cross-
sectional estimates were based upon the same sample. Furthermore, because of rotations
used in repeated surveys, cross-sectional estimates are not independent. Let s1 and s2
denote respectively the first and second wave samples. The samples s1 and s2 are usually
not completely overlapping sets of units, because repeated surveys use rotation designs
which consist in selecting new units (i ∈ s2 \ s1) to replace old units (i ∈ s1 \ s2) that
have been in the survey for a specified number of waves. We assume that s1 and s2 have
the same sample size n. Let n12 denote the sample size of the common sample s1 ∩ s2.
The units sampled on wave 1 and 2 represent usually a large fraction of the sample s1 ;
that is, n12/n is usually large. We denote the overall sample by s = s1 ∪ s2. The size of
the overall sample is denoted by ñ = #s. We assume that the rotation sampling design
is such that n and n12 are fixed quantities.
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This class contains standard rotating sampling designs such as the rotating systematic
sampling design (Holmes & Skinner [8]), the rotation groups sampling design (e.g. Kalton
[11] and Gambino & Silva [7], the rotating design proposed by Tam [18] and the permanent
random numbers rotating design (e.g. Ohlsson [14] and Nordberg [13]).

Let y1;i and y2;i denote respectively the value of the variable of interest for wave 1 and
2. Suppose, we wish to estimate the absolute change ∆ = τ2 − τ1 between the following
two population totals

τ1 =
∑
i∈U

y1;i and τ2 =
∑
i∈U

y2;i

from wave 1 and wave 2 respectively, where U denotes the population which is assumed
to be the same at both waves. The quantity N will denote the population size.

Some of the values of y1;i and y2;i can be missing due to nonresponse. We propose to
impute these missing values.

In §2, we show how random hot-deck can be used to compensate for nonresponse. In §3,
we propose to use a reverse approach proposed by Fay [6] to estimate the variance of the
imputed estimator of change. The proposed variance estimator depends on a covariance
matrix which will be estimated using a multivariate (general) linear regression approach
described in §4.

2 Hot-deck imputation

For simplicity, we assume that random hot-deck imputation is used, although the pro-
posed approach can be generalised for other imputation techniques. The main advantage
of hot-deck imputation is the fact that it guarantees unbiased estimation of population
distributions.

The missingness is represented by the following random variables

a1;i =

{
0 if y1;i is missing,
1 otherwise,

and a2;i =

{
0 if y2;i is missing,
1 otherwise.

The observed values of a1;i and a2;i are known. For simplicity, we use the same notation for
the random variables and their observed values. Note that we will not impute the values
y2;i of the units i ∈ s2 \ s1 which rotate in and the values y1;i of the units i ∈ s1 \ s2 which
rotate out, as these units are not sampled and their missingness is not due to nonresponse.

Let s1;r = {i : i ∈ s1 and a1;i = 1} denote the wave 1 sample of respondents and let
s2;r = {i : i ∈ s2 and a2;i = 1} denote the wave 2 sample of respondents. We propose to
impute the missing values for the variables y1;i and y2;i, using the random hot-deckimputed
values given by

y∗1;i = z1;i {(1− a1;i) (µ̂r
1 + e1;i) + a1;iy1;i} ,

y∗2;i = z2;i {(1− a2;i) (µ̂r
1 + e2;i) + a2;iy2;i} ,

where

z1;i =

{
1 if i ∈ s1,
0 otherwise,

and z2;i =

{
1 if i ∈ s2,
0 otherwise,

(1)

and µ̂r
1 and µ̂r

2 are the respondents means given by

µ̂r
1 =

τ̂ r1

N̂ r
1

and µ̂r
2 =

τ̂ r2

N̂ r
2

·
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The quantities τ̂ r` and N̂ r
` are, respectively, the estimators of the respondents’ totals and

of the number of respondents in the population at wave `. These estimators are given by

τ̂ r` =
∑
i∈s

y̆◦`;i , N̂ r
` =

∑
i∈s

ă◦`;i

where y̆◦`;i = y`;iă
◦
`;i, ă

◦
`;i = z̆`;ia`;i and z̆`;i = z`;iπ

−1
`;i · The quantities π1;i and π2;i denote the

first-order inclusion probabilities of the unit i at waves 1 and 2. The quantities e1;i and
e2;i are the residuals

e1;i = y1;j − µ̂r
1 and e2;i = y2;k − µ̂r

1 ,

where j is a donor selected with replacement with probabilities {p1;i} within the set s1;r,
and k is a donor selected with replacement with probabilities {p2;i} within the set s2;r·
The selection probabilities p`;i are given by

p`;i =
ă◦`;i∑
j∈s ă

◦
`;j

·

Note that we can also use e`;i = 0 , in this case the quantities y∗`;i are the imputed values
under hot-deck mean imputation.

2.1 The imputed estimator of change

The imputed estimator for change is given by

∆̂∗ = τ̂ ∗2 − τ̂ ∗1 , (2)

where τ̂ ∗1 and τ̂ ∗2 are two cross-sectional imputed Horvitz-Thompson [9] estimators defined
by

τ̂ ∗1 =
∑
i∈s

y∗1;i
π1;i

and τ̂ ∗2 =
∑
i∈s

y∗2;i
π2;i
·

3 Variance of the imputed estimator of change

We propose to estimate the variance of (2) using a reverse approach (Fay [6] ; Shao &
Steel [16]) for non-response. Let U1;r and U2;r be respectively the population of respondents
at wave 1 and 2. In other words, at both waves, the population is randomly split into a
population of respondents and a population of non-respondents according to an unknown
response mechanism. Let Er and Vr denote respectively the expectation and the variance
operators with respect to that response mechanism.

Rotating samples s1 and s2 are selected from the population U according to a rotation
sampling design (see §1). The sample of respondents at wave ` is given by s`;r = U`;r ∩ s`·
Let Ed and Vd denote respectively the expectation and the variance operators with respect
to the sampling design. Furthermore, we suppose that the random hot-deck imputation
described in §2 is used to impute the missing values. Let EI and VI denote respectively
the expectation and the variance operators with respect to the random imputation.

The overall variance of the imputed estimator of change is given by the following three
stage variance,

V (∆̂∗) = Er(Vd(∆̂
∗
R,S|R)) + Vr(Ed(∆̂

∗
R,S|R)) + Er(Ed(VI(∆̂

∗|S,R)|R)) (3)
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where

∆̂∗R,S = EI(∆̂
∗|S,R)

and S = {s1, s2} and R = {U1;r, U2;r}· Note that the overall variance includes the effect
of the response mechanism, the sampling design and the randomness of the hot-deck
imputation. As the second term of (3) is negligible when the sampling fraction is negligible
(Shao & Steel [16]), we have that

V (∆̂∗) l Er(Vd(∆̂
∗
R,S|R)) + Er(Ed(VI(∆̂

∗|S,R)|R))· (4)

Note that as EI(e`;i|S,R) = 0, and as the e`;i are selected independently, the conditio-

nal variance VI(∆̂
∗|S,R) is given by

VI(∆̂
∗|S,R) =

2∑
`=1

VI(e`;i|S,R)
∑
i∈s

z`;i
π2
`;i

(1− a`;i) ,

where

VI(e`;i|S,R) =
∑
i∈s

a`;ip`;ie
2
`;i· (5)

Note that in (5), we use the same notation for the random variables e`;i and their observed

values. Note that under mean imputation, we have that VI(∆̂
∗|S,R) = 0, as e`;i = 0·

As EI(e`;i|S,R) = 0, we have that

∆̂∗R,S = N̂2µ̂
r
2 − N̂1µ̂

r
1 ,

where N̂` =
∑

i∈s z̆`;i is an estimator of N · Note that ∆̂∗R,S is a function of six totals ; that

is, ∆̂∗R,S = f(τ̂ ) where τ̂ = (N̂1, N̂2, τ̂
r
1 , τ̂

r
2 , N̂

r
1 , N̂

r
2 )′ is a vector of Horvitz & Thompson

[9] totals. Using Taylor approximation, we have that

∆̂∗R,S −∆ l ∇(τ )′(τ̂ − τ ) ,

where

∇(τ ) =

(
−τ r1
N r

1

,
τ r2
N r

2

,
−N
N r

1

,
N

N r
2

,
Nτ r1

(N r
1 )2

,
−Nτ r2
(N r

2 )2

)′
is the gradient of f(τ ) at τ = (N,N, τ r1 , τ

r
2 , N

r
1 , N

r
2 )′, where τ r1 and τ r2 are the population

totals of the variable of interest over the respondents at waves 1 and 2 ; and N r
1 and N r

2

are the total number of respondents in the population at waves 1 and 2.
The Taylor approximation of Vd(∆̂

∗
R,S|R) is given by

Vd(∆̂
∗
R,S|R) l ∇(τ )′V d(τ̂ |R)∇(τ ) ,

where V d(τ̂ |R) is the design covariance matrix of the vector τ̂ · Thus, an approxima-
tely design-based unbiased estimator for Vd(∆̂

∗
R,S|R) is given by the following linearised

variance estimator

V̂d(∆̂
∗
R,S|R) = ∇(τ̂ )′V̂ d(τ̂ |R)∇(τ̂ ) , (6)
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where V̂ d(τ̂ |R) is the approximately design-unbiased estimator (9) of the covariance ma-
trix V d(τ̂ |R)· Note that in (6), the a1;i and the a2;i are treated as fixed quantities, as it

is a conditional variance Vd(∆̂
∗
R,S|R) given R·

The proposed estimator of the variance of the imputed estimator of change is given
by

V̂I(∆̂
∗) = V̂d(∆̂

∗
R,S|R) + VI(∆̂

∗|S,R)· (7)

The proposed estimator (7) can be generalised for other types of imputation, as long
∆̂∗R,S is a function of Horvitz-Thompson totals. In this situation the gradient will have a
different expression which depends on the used imputation.

The proposed estimator (7) is an approximately unbiased estimator of the variance
(3), as the expectation of (7) is given by

Er(Ed(EI(V̂I(∆̂
∗)|S,R)|R)) = Er(Ed(EI(V̂d(∆̂

∗
R,S|R)|S,R)|R))

+Er(Ed(EI(VI(∆̂
∗|S,R))|R))

l Er(Vd(∆̂
∗
R,S|R)) + Er(Ed(VI(∆̂

∗|S,R)|R))

l V (∆̂∗) ,

by using (4) and the fact that (6) does not depends on the e`;i· The main advantage of the
proposed estimator is the fact that it is approximately unbiased under the unknown res-
ponse mechanism without making assumptions about it for the estimation of the variance
.

4 Estimation of the covariance matrix by the multi-

variate regression approach

In this section, we derive an expression for the estimator of the covariance matrix
V d(τ̂ |R) under rotation sampling. This covariance is not straightforward to estimate
because it involves covariance between the components of τ̂ defined from the different
samples, s1 and s2· Several methods can be used to estimate these covariances (e.g. Kish
[12] ; Tam [18], Holmes & Skinner [8], Nordberg [13], Berger [3] ; Qualité & Tillé [15] ;
Wood [19]). We propose to use a multivariate (or general) linear regression model to
estimate this covariance matrix.

Consider the following ñ × 6 matrix Y̆
◦

= (y̆◦1, . . . , y̆
◦
ñ)′ , where ñ = #{s1 ∪ s2} and

y̆◦i = (z̆1;i, z̆2;i, y̆
◦
1;i, y̆

◦
2;i, ă

◦
1;i, ă

◦
2;i)
′· Consider the following multivariate (general) regression

model

Y̆
◦

= Zs α+ ε , (8)

where α is the 3×6 matrix of regression parameters, the residuals ε have a 6×6 covariance
matrix Σ, andZs is the ñ×3 design matrix which specifies the fixed sizes constraints of the
rotation design. The matrix Zs is defined by Zs = (z1, . . . ,zñ)′, with zi = (z1;i, z2;i, z1;i×
z2;i)

′ where z1;i and z2;i are defined by (1). The model (8) belongs to the class of general
linear model. In fact, (8) is also a multivariate analysis of variance (MANOVA) model, as
the independent variables are all dummy variables.

Note that we have the following fixed size constraints
∑

i∈s z`;i = n,
∑

i∈s z1;iz2;i = n12,
because only samples with these sample sizes can be selected. Thus, by using the design
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variables as independent variables, we are conditioning on them. This takes into account
of the fixed size constraints in the estimation of the covariance (see Berger & Priam
[4]). Note that the model (8) includes interactions between the variable z1;i and z2;i.
These interactions capture the rotation of the sampling design which is represented by
the constraint

∑
i∈s z1;iz2;i = n12.

Berger & Priam [4] proposed the following estimator for the covariance matrix of the
vector τ̂ ·

V̂ d(τ̂ |R) = D̂
′
Σ̂D̂ , (9)

where the matrix Σ̂ is the Ordinary Least Squares residual covariance matrix estimate of
the model (8) and D̂ is a diagonal matrix with diagonal elements {V̂ (τ̂q|R)Σ̂−1qq }1/2, where

V̂ (τ̂q|R) is a design-based variance estimator of the q-th component of τ̂ , and Σ̂qq is the

q-th diagonal component of Σ̂· Any unbiased standard variance estimator can be used
to calculate V̂ (τ̂q|R)· Note that (9) is positive definite, as Σ̂ is always positive definite.
Hence the proposed variance estimator (7) is always positive.

Berger & Priam [4] showed that the estimator V̂ d(τ̂ |R) defined in (9) is an approxi-
mately design unbiased estimator for the covariance matrix when the finite population
corrections are negligible. The estimator (9) is a design-consistent estimator for the cova-
riance matrix even when model (8) does not fit the data (Berger & Priam [4]). Note that
the estimator (9) takes into account of the unequal probabilities.

In a series of simulations based on the Swedish Labour Force Survey, Andersson et al.
[2, 1] showed that the estimator (9) gives more accurate estimates than standard variance
estimators (Tam [18], Qualité & Tillé [15]) when we are interested in change between
strata domains.

5 Discussion

The variance estimator proposed is applicable for unequal rotation sampling designs
when random hot-deck imputation is used at both waves and the sampling fractions
are negligible. The variance estimator proposed may be extended in various ways. Point
estimators, such as calibration estimators (Huang & Fuller [10] ; Deville & Särndal [5])
which employ auxiliary population information may often be expressible as functions
of totals. The proposed variance estimator (7) can be modified to accommodate this
situation.

The proposed approach is not limited to hot-deck imputation, as the proposed ap-
proach can be extended to other imputation techniques, as long as the expectation of the
imputed estimator of change under the random imputation method can be expressed as a
function of totals. For simplicity, we assumed that we have only one imputation class. The
proposed estimator can be extended to several imputation classes which are defined as
homogeneous sub-groups of the overall sample s· At the second wave, it is also a common
practice to impute using observations from the first wave. It would be useful to generalise
the proposed estimator for this method of imputation.

Résumé

Mesurer le changement temporel est un problème central pour de nombreux utilisateurs
de données sociales, économiques et démographiques et suscite beaucoup d’intérêt dans de
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nombreux domaines des sciences économiques et sociales. Smith et al. [17] ont reconnu
que l’estimation du changement est l’un des défis les plus importants dans les statistiques
d’enquêtes. Les utilisateurs sont souvent interessés à estimer des changements ou des
tendances d’une période à l’autre. Un problème courant est de comparer deux estimations
transversales pour la même variable étudiée à deux vagues différentes. Ces estimations
transversales comprennent souvent des valeurs imputées pour compenser la non-réponse.
L’estimation de la variance d’échantillonnage de l’estimateur du changement imputé est
utile pour juger si le changement observé est statistiquement significatif. Les covariances
jouent un rôle important dans l’estimation de la variance d’un changement. Nous pro-
posons d’utiliser une approche de régression linéaire multivariée (Berger et Priam [4])
pour estimer les covariances. L’estimateur proposé n’est pas un estimateur basé sur un
modèle, et cet estimateur est valable même si le modèle n’ajuste pas les données. Nous
montrons comment cette approche peut être utilisée pour tenir compte de l’effet de l’im-
putation. L’approche par la régression multivariée donne des estimateurs consistents pour
la variance des changements lorsque la fraction d’échantillonnage est faible et que les
corrections de population finie sont négligeables.
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