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1 Introduction

Panel data are very useful to distinguish between state dependence and unobserved
heterogeneity (see, e.g., [11]), to analyze the dynamics of variables such as income (see,
e.g., [9]) or spells in duration analysis (see, e.g., [15]). However, these advantages may
be counterbalanced by attrition, which can be especially severe when units are observed
over a long period of time. Besides, attrition is often considered more problematic than
standard nonresponse, because the reasons of attrition are often related to the outcomes
of interest, or variations in these outcomes. Several solutions have been considered in the
literature to handle these issues. A first model is to suppose that attrition is exogenous,
i.e. depends on lagged values that are observed by the econometrician (see, e.g., [16]).
This, however, rules out a dependence between attrition and current outcomes, and is
thus likely to fail in many cases. A second model takes the opposite point of view by assu-
ming attrition to depend on contemporaneous values only (see [10]). Such an assumption
fails to hold if attrition is related to transitions in outcomes. In the French labor force
survey, for instance, households that move during the period are lost. But house moving
is likely to be related to changes in the employment status. To handle more complex at-
trition patterns, [12] generalize the two previous models by allowing attrition to depend
both on contemporaneous and lagged values. This generalization is made possible when
a refreshment sample, i.e. a sample of new units surveyed at each period, is available.

In this paper, we consider still another approach, based on instruments. Contrary to
[12], we do not impose any functional restrictions on the probability of attrition condi-
tional on lagged and contemporaneous values. Refreshment sample are not needed either.
On the other hand, we suppose to have in hand an instrument which is independent
of attrition conditional on past and contemporaneous outcomes. A rank condition bet-
ween the instrument and the contemporaneous outcome, which can be stated in terms of
completeness, is also needed. Hence, the instrument is typically a lagged variable which
affects the contemporaneous outcome but not directly attrition. We can use for instance
past outcomes obtained from a retrospective questionnaire. We show indeed that under
a nonlinear fixed effect model, such a variable is likely to meet the nonparametric rank
condition, and satisfies also the conditional independence condition if attrition only de-
pends on transitions on the outcome.

An advantage of our method is that even if no more instruments than outcomes are
available, we can test for the conditional independence assumption. Another way of testing
this assumption is to use refreshment samples, even though they are unnecessary in our
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setting. Indeed, the marginal distribution of the contemporaneous outcome is directly
identified with such samples. Thus, we can compare this distribution with the one obtained
under our identifying restriction.

We also conduct inference under such an attrition process. In the case of discrete
outcomes and instruments, the model is parametric and a straightforward constrained
maximum likelihood estimation procedure is proposed. In the continuous case, the model
is semiparametric and estimation is more involved. We first provide a necessary and
sufficient condition for root-n estimability of linear functionals, and compute under this
condition the asymptotic efficiency bound. Our results are close to those obtained recently
by [23] in the case of nonparametric instrumental regressions. Second, we propose two
estimation methods to estimate such linear functionals. The first is efficient but relies on
rather restrictive conditions, whereas the second is not efficient but consistent under mild
assumptions.

Finally, we apply our results to study transitions on the French labor market, using
the labor force survey of the French national institute of statistics (INSEE). This survey
is one of the most important survey conducted by INSEE, but its reliability has been
much questioned inside the institute by the end of 2006 and the beginning of 2007 (i.e.,
during the French presidential elections campaign), as the discrepancy between the IN-
SEE unemployment rate estimate and the one coming from administrative data started
to increase. We reinvestigate this issue by studying the nature of attrition in this survey.
Using the refreshment sample, we test and accept on the subsample of women the condi-
tional independence assumption with past employment status used as an instrument. Our
estimates indicate that attrition is highly related to transitions in the labor market, in
a way that violated the additive restriction considered by [12]. We show that this has
important implications for the estimation of the probabilities of transition on the labor
market.

The paper is organized as follows. In the second section, we study identification and
testability under endogenous attrition, and compare our model with the existing literature.
In the third section, we develop inference for both discrete or continuous outcomes. The
fourth section is devoted to our application. Finally, the fifth section concludes. All proofs
are gathered in the appendix.

2 Identification

2.1 The setting and main result

For simplicity, we consider a panel dataset with two dates t = 1, 2, and also suppose
that there is no or ignorable nonresponse at date 1. We let D = 1 if the unit is observed
at date 2, D = 0 otherwise. We let Yt denote the outcome at t and Y = (Y1, Y2). We also
consider an instrument Z1 whose role will be explained below, and let Z = (Y1, Z1). We
focus hereafter on the identification of either the joint distribution of (D, Y, Z) or on a
parameter β0 = E(g(Y, Z)). Our first assumption states the observational problem.

Assumption 2.1. We observe (D,Z) and Y2 when D = 1.

To satisfy this requirement, Z1 should be observed at the first period, or at the second
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period if some information on nonrespondents at the second period is available. 1 Of
course, to achieve full identification of (D, Y, Z), restrictions are needed on the distribution
of (D, Y, Z). If attrition directly depends on the outcome Y , the usual assumption of
exogenous selection fails, and it may be difficult to find an instrument that affects the
selection variable but not the outcome. On the other hand, a variable Z1 related to Y but
not directly to D may be available in this case. We thus assume the following : 2

Assumption 2.2. D ⊥⊥ Z1|Y .

This assumption is identical to the one considered by [6] in the case of endogenous
selection. This assumption was also considered by [5], [24] and [19] in a nonresponse
framework. Intuitively, this assumption states that the attrition equation depends on Y1
and Y2 but not on Z1. If Y2 was endogenous (but always observed) in this equation, we
could instrument it by Z1 to identify the causal effect of Y2 on D. Here the problem is
actually slightly different : Y2 is observed only when D = 1. The identification strategy will
be similar, however, as we will use the instrument to recover the conditional distribution
of attrition.

Let P (Y ) = P (D = 1|Y ). Because identification is based on inverse probability weigh-
ted moment conditions, we assume the following :

Assumption 2.3. (i) P (Y ) > 0 almost surely.

This assumption is similar to the common support condition in the treatment effects
literature. It does not hold if D is a deterministic function of Y , as in simple truncation
models where D = 1{g(Y ) ≥ y0}, y0 denoting a fixed threshold.

Before stating our main result, let us introduce some notations. For any random va-
riable U and p > 0, let Lp(U) (respectively Lp(U |D = 1)) denote the space of func-
tions q satisfying E(|q(U)|p) < +∞ (respectively E(|q(U)|p|D = 1) < +∞). Note that
1/P ∈ L1(Y |D = 1) because E(1/P (Y )|D = 1) = 1/E(D). For any set A ⊂ L1(U |D = 1),
let also

A⊥ = {q ∈ L1(U |D = 1) : ∀a ∈ A,E(|q(U)a(U)||D = 1) <∞ E(q(U)a(U)|D = 1) = 0}.

The following operator will be important for identification issues :

T : L1(Y |D = 1) → L1(Z|D = 1)
q 7→ (z 7→ E(q(Y )|D = 1, Z = z)) .

Because Y is observed when D = 1, T is identified. Besides, and as indicated previously,
identification hinges upon dependence conditions between Y2 and Z, which are actually re-
lated to the null space Ker (T ) of T . Let F = {q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s.}
and for f ∈ L1(Y, Z),

Ff =
{
q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s. and E(|q(Y )f(Y, Z)||D = 1) <∞

}
.

Finally, in the case where g ∈ L1(Y, Z) we denote β(Y ) = E[g(Y, Z)|Y ]. Our main result
is the following.

1. Actually, our results would hold if Z1 is observed only when D = 1, provided that the distribution
of (Y1, Z) is identified (through another dataset for instance).

2. Assumption 2.2 could be extended to include covariates, i.e. D ⊥⊥ Z1|Y,X, provided that X is
always observed. We do not include them for the sake of simplicity.
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Théorème 2.1. If assumptions 2.1-2.3 hold, then :

1. The distribution of (D, Y, Z) is identified if and only if Ker (T ) ∩ F = {0}.
Moreover, if g ∈ L1(Y, Z) we have :

2. The set of identification of β0 is {β0 + E(D)E [β(Y )h(Y )|D = 1] : h ∈ Ker (T ) ∩ Fg}.
3. β0 is identified if and only if β(.) ∈ (Ker (T ) ∩ Fg)⊥.

Let us provide the intuition for the easiest result, i.e. the “if” part of the first statement.
We rely on the fact that under Assumptions 2.2 and 2.3(i), it is sufficient to identify P (Y )
to recover the whole distribution of (D, Y, Z). Besides, we show that this function satisfies

T

(
1

P

)
= w, (2.1)

where w(Z) = 1/P (D = 1|Z). Because T and w are identified, P is identified if there is a
unique solution in (0, 1] of this equation. This uniqueness can be established if Ker (T ) ∩
F = {0}.

The identifying condition Ker (T )∩F = {0} is related to various completeness condi-
tions considered in the literature (see, e.g., [18], [22], [4], and [7]). 3 When Y and Z
have a finite support (respectively by (1, ..., I) and (1, ..., J)), this assumption amounts
to rank(M) = I, where M is the matrix of typical element P (Y = i|D = 1, Z = j) (see
[18]). Hence, the support of Z must be at least as rich as the one of Y (J ≥ I) and the
dependence between the two variables must be strong enough for I linearly independent
conditional distributions to exist. Because the matrix M is identified, it is straightforward
to test for this condition, using for instance the determinant of MM ′ (see Subsection 3.1
below). When Y and Z are continuous, it is far more difficult to characterize them. Condi-
tions have been provided by [18], [6] and [7]. We consider below another example, related
to our panel framework, where the restriction Ker (T ) ∩ F = {0} is satisfied.

The third statement of the theorem shows that when we specialize in one parameter
rather than on the full distribution of (D, Y, Z), identification is achieved under weaker
restrictions. Indeed, Fg ⊂ F and then (Ker (T )∩F)⊥ ⊂ (Ker (T )∩Fg)⊥. Thus, Ker (T )∩
F = {0} implies that β(.) ∈ (Ker (T )∩Fg)⊥ but the contrary needs not be true. This result
is closely related to Lemma 2.1 of [23], who consider identification of linear functionals
related to a nonparametric instrumental regression. Finally, the second statement of the
theorem describes the identification set of β0 in general.

As an illustration of Theorem 2.1 with continuous outcomes, suppose that we observe
at the first date a past outcome Y0, thanks to a retrospective questionnaire. This will be
the case in the application considered in Section 4. Suppose also that the outcomes satisfy
the following nonlinear fixed effect model :

Λ(Yt) = U + εt, (2.2)

where Λ(.) is a strictly increasing real function and (U, ε0, ε1, ε2) are independent. Such a
model generalizes standard linear fixed effect model Yt = U + εt and is close to the acce-
lerated failure time model in duration analysis. Note that we do not introduce covariates
here for simplicity, but our result can be extended to the more realistic model considered

3. Our condition is intermediate between the stronger “standard” completeness condition Ker (T ) =
{0} and the bounded completeness condition Ker (T )∩B = {0}, where B is the set of bounded functions.
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by [8], namely Λ(Yt, Xt) = ψ(U,Xt) + εt with Λ strictly increasing in Yt, provided that
the covariates Xt are always observed at each period.

We also suppose that attrition only depends on current outcomes and transitions :

D = g(Y1, Y2, η), η ⊥⊥ (Y0, Y1, Y2). (2.3)

Finally, we impose the following technical restriction on U, ε0 and ε2. For any random
variable V , we let ΨV denote its characteristic function.

Assumption 2.4. U admits a density with respect to the Lebesgue measure, whose support
is the real line. Ψε0 vanishes only on isolated points. The distribution of ε2 admits a
continuous density fε2 with respect to the Lebesgue measure. Moreover, fε2(0) > 0 and
there exists α > 2 such that t 7→ tαfε2(t) is bounded. Lastly, Ψε2 does not vanish and is
infinitely often differentiable in R\A for some finite set A.

The assumption imposed on the characteristic function of ε0 is very mild and satisfied
by all standard distributions. The conditions on ε2 are more restrictive but hold for many
distributions such as the normal, the student with degrees of freedom greater than one 4

and the stable distributions with characteristic exponent greater than one. The following
proposition shows that under these conditions, the model is fully identified using Y0 as
the instrument.

Proposition 2.2. Let Z = (Y0, Y1), and suppose that Assumptions 2.3(i), 2.4, Equations
(2.2) and (2.3) hold. Then Assumption 2.2 holds and Ker (T ) ∩ F = {0}. Thus, the
distribution of (D, Y, Z) is identified.

2.2 Partial identification and testability

Apart from point identification under various completeness conditions, our attrition
model displays two interesting features. First, Assumption 2.2 is refutable, contrary to
the ignorable attrition assumption considered above. Second, we can obtain bounds on
parameters of interest when the model is underidentified, i.e. when the above completeness
condition fails to hold. Both are due to the fact that solutions to Equation (2.1) must lie
in [0, 1]. These inequality constraints can be used both for testing and bound parameters
of interest.

To see this, consider the case where (Y, Z) has a finite support. If Y and Z take
respectively I and J distinct values, then (2.1) can be written as a linear system of J
equations with I unknown parameters and the inequality constraints xx. Of course, the
model is overidentified and thus testable when I > J , but we can also test for the inequality
constraints when I ≤ J . We derive a formal statistical test of this condition in Subsection
3.1 below. We can also partially identify parameters of interest in the underidentified case
I < J . DETAILLER

Finally, a stronger test of the conditional independence assumption can be derived if
a refreshment sample is available, as in [12]. In this case, the marginal distribution of Y2
is identified. But then we can reject the conditional independence assumption if for all Q
satisfying T (1/Q) = w, there exists t such that

E

[
D1{Y2 ≤ t}

Q(Y )

]
6= P (Y2 ≤ t).

4. See e.g. [17] for a proof that the conditions on the characteristic function of student distributions
are indeed satisfied.
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2.3 Comparison with the literature

We compare our approach with the most usual models of attrition.

2.3.1 Missing at random attrition

This model, which has been considered by, e.g., [21] and [1], posits that D only depends
on Y1 :

D ⊥⊥ Y2|Y1. (2.4)

Identification of the joint distribution of (Y1, Y2) follows directly from the fact that, letting
fD,Y1,Y2 denote the density of (D, Y1, Y2) with respect to an appropriate measure,

fY1,Y2(y1, y2) =
fD,Y1,Y2(1, y1, y2)

P (D = 1|Y1 = y1)
.

Condition (2.4) is the equivalent, in a panel setting, of the so-called missing at random
assumption (see, e.g., [16]) or the unconfoundedness assumption in the treatment effect
literature (see for instance [13]). Because it rules out any dependence between attrition
and current outcomes, it is likely to fail in many cases. In a labor force survey, for ins-
tance, house moving is a common source of attrition, and is itself related to changes in
employment and/or earnings.

2.3.2 Dependence on current values

Compared to the first, the logic of this model is the opposite, as attrition is related to
current values only :

D ⊥⊥ Y1|Y2. (2.5)

This assumption has been considered by [10] in a parametric model. This assumption
takes into account nonignorable attrition, but in a special way. Indeed, it rules out the
possibility that transitions (i.e., functions of (Y1, Y2)) explain attrition. Abstracting from
the parametric restrictions of [10], identification can be proved along the same lines as
previously. It suffices indeed to solve in g the functional equation

E [g(Y2)|D = 1, Y1] = 1/P (D = 1|Y1).

Under completeness conditions similar to the one above, this equation admits a unique
solution in g, namely 1/P (D = 1|Y2 = .).

2.3.3 Additive restriction on the probability of attrition

[12] propose a two period framework which generalize both previous examples in the
sense that D may depend on both Y1 and Y2. This generalization is possible when a re-
freshment sample, which allows one to identify directly the distribution of Y2, is available. 5

They also suppose that

1/P (D = 1|Y1, Y2) = g(α + k1(Y1) + k2(Y2)), (2.6)

5. Note that because, the distribution of Y1 is also identified from the panel at date 1, the problem
reduces to recover the copula of (Y1, Y2).
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where g is a known function, but k1(.) and k2(.) are unknown. They show that k1(.) and
k2(.) are identified. This allows them to recover the joint distribution of (Y1, Y2), since by
the Bayes’ rule,

fY1,Y2(y1, y2) = fY1,Y2|D=1(y1, y2)P (D = 1)g(α + k1(y1) + k2(y2)),

Compared to our approach, [12] do not rely on any exclusion restriction. This comes at
the cost of imposing the additive restriction on P (D = 1|Y1, Y2), which may be restrictive
(see below), and having a refreshment sample, which is not needed in our case.

Though the identification proof of [12] is much different from ours, the two frameworks
are actually related. As shown by [2], identification in this additive model can be directly
obtained from the functional equations

E [g(k1(Y1) + k2(Y2))|D = 1, Yi] = 1/P (D = 1|Yi).

Thus, identification is actually achieved along similar lines as above, the instrument being
equal to (Y1, Y2). The difference here is that only the marginal distributions of the ins-
trument is identified. This is the reason why they have to impose Model (2.6) to the
attrition process. Note that such a restriction is not innocuous. If attrition depends on
transitions, then their restriction is likely fails to hold. If, as in our application, attrition
occurs for individuals who move, and that moving itself occurs with a large probability
when employment status changes, then P (D = 1|Y1, Y2) depends on 1{Y1 = Y2}. Model
(2.6) cannot handle such an attrition process.

3 Estimation

We now turn to inference within our framework of endogenous attrition. As previously,
we focus on the estimation of the distribution of (D, Y, Z), but also on the parameter
β0 = E(g(Y, Z)), which can be estimated under restrictions detailed before. We first posit
an i.i.d. sample of n observations.

Assumption 3.1. We observe an iid sample ((D1, D1Y21, Z1), ..., (Dn, DnY2n, Zn)).

We consider two cases subsequently. The first one, in line with our application, assume
that the support of (Y, Z) is finite. Under this case we derive a simple and efficient
estimator and a test of the exclusion condition. In a second time, we relax the finite support
assumption and we exhibit a necessary condition for existence of a root-N estimator. Under
this condition we derive the semi-parametric efficiency bounds and finally we propose a
root-N estimator.

3.1 The finite support case

We denote the support of Yt and Z1 by respectively {1, ..., I} and {1, ..., J}, with
I ≤ J . 6 In this case, the data (D,DY2, Z) are distributed according to a multinomial
distribution. To get asymptotic efficient estimators, we consider constrained maximum
likelihood estimation hereafter.

6. Of course, our setting readily extends to a case where discrete covariates X are available, and
Assumption 2.2 holds conditionally (i.e., D ⊥⊥ Z|Y,X).
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For a fixed y, let p1ij = P (D = 1, Y2 = i, Z1 = j|Y1 = y) and p0.j = P (D =
0, Z1 = j|Y1 = y) denote the probabilities corresponding to the observations, and define
p1 = (p111, ..., p1IJ), p0. = (p0.1, ..., p0.J) and p = (p1, p0.). Note that we let the dependence
in y implicit hereafter. p is the natural parameter of the statistical model here, as it
fully describes the distribution of (D,DY2, Z1) (conditional on Y1).

7 However, it does
not directly allow us to recover the whole distribution of (D, Y2, Z1). This is why we also
introduce p0ij = P (D = 0, Y2 = i, Z1 = j|Y1 = y), and define p0 as p1. Then any parameter
θ0 of the distribution of (D, Y2, Z1) is a function of (p0, p1), and we write θ0 = g(p0, p1).
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Finally, we adopt the same notations for the constrained maximum likelihood estimator
p̂ as for p, and we let n1ij =

∑
k:Y1k=y

Dk1{Y2k = i}1{Z1k = j} and define n0.j accordingly.
The following proposition shows how to compute p̂ and an efficient estimator of θ0 in our
attrition model.

Proposition 3.1. Suppose that Assumptions 2.1-2.3(i) hold. Then the maximum likeli-
hood estimator p̂ satisfies

p̂ = arg max
(q,b)∈[0,1](I+1)J×RI

J∑
j=1

[
n0.j ln q0.j +

I∑
i=1

n1ij ln q1ij

]

s.t.

∣∣∣∣∣∣∣
∑J

j=1

[
q0.j +

∑I
i=1 q1ij

]
= 1,

bi ≥ 0 i = 1, ..., I,∑I
i=1 q1ijbi = q0.j j = 1, ..., J.

(C)

Suppose moreover that the matrix P1 of typical element p1ij has rank I and g is differen-
tiable. Then θ0 is identifiable and can be estimated efficiently by

θ̂ = g(p̂0, p̂1),

where p̂0ij = b̂ip̂1ij, and b̂ = (̂b1, ..., b̂I) is a solution of constraints (C) taken at q = p̂.

Proposition 3.1 establishes that the maximum likelihood of p can be obtained by
a constrained maximization with quite simple (although nonlinear) constraints. It also
shows how to compute an efficient estimator of θ0. The idea behind the introduction of
the (bi)i is that, by Bayes’ rule and Assumption 2.2,

p0ij =
P (D = 0|Y1 = y, Y2 = i)

P (D = 1|Y1 = y, Y2 = i)
p1ij,

and bi represents the odds P (D = 0|Y1 = y, Y2 = i)/P (D = 1|Y1 = y, Y2 = i). The
inequality constraints bi ≥ 0 then ensure that P (D = 1|Y = i) is indeed a probability,
while the equality constraints are a rewriting of Equation (2.1) in the discrete context.

The identifying condition rank(P1) = I is the equivalent of Ker (T ) ∩ F = {0} here.
It can be easily tested in the data because under the null hypothesis that rank(P1) < I,

7. This parametrization is also convenient for the unconstrained model where Assumption 2.2 does
not necessarily hold.

8. We thus consider here implicitly parameters that depend on the distribution of (D,Y2, Z1) conditio-
nal on Y1. To estimate unconditional parameters, it suffices to integrate conditional parameters over the
empirical distribution of Y1. Because Assumption 2.2 does not impose any restriction on the distribution
of Y1, this results in asymptotically efficient estimators.
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we have µ0 ≡ det(P1P
′
1) = 0. Then, letting µ̂ = det(P̂1P̂

′
1),
√
nµ̂ tends to a zero mean

normal variable under the null by the delta method. We use this result to test for the
rank condition in our application Section 4.

Finally, as noted before, we can test for Assumption 2.2 by two ways. The first and
standard one is that the equality constraints in (C) may not hold when J > I, because
there is no (bi)1≤i≤I such that

∑I
i=1 bip1ij = p0.j. Basically, this arises when the different

values of Z are not “compatible”, as with the Sargan test in linear IV models. The second
is that the (bi)1≤i≤I which satisfy these equality constraints must be nonnegative. This
may not hold in general, even when I = J . To test for both conditions simultaneously,
we use the same Wald statistic as the one of [14]. In our framework, the unconstrained
model where Assumption 2.2 does not necessarily hold is simply the multinomial model
on (D,DY2, Z) parameterized by p, and the maximum likelihood estimator p̂U simply
corresponds to the sample proportions. The contraints (C) corresponding to Assumption
2.2 hold if and only if there exists b ≥ 0 (understood componentwise) such that P ′1b = p0..
This condition is equivalent to 9[

P ′1(P1P
′
1)
−1P1 − I

]
p0. = 0, (P1P

′
1)
−1P1p0. ≥ 0.

Let us rewrite these constraints as h1(p) = 0 and h2(p) ≥ 0, and let h(p) = (h1(p), h2(p)).
Let also H0 = 0J ×R+I denote the set of h = (h1, h2) satisfying these constraints. Denote

by Σii (resp. Σ12) the asymptotic variance of ĥi ≡ hi(p̂U) (resp. covariance of h1(p̂U) and

h2(p̂U)), and by Σ the asymptotic variance of ĥ ≡ h(p̂U). Finally, let Σ̂ denote a consistent
estimator of Σ. The test statistic Wn is then defined as

Wn = n min
h∈H0

(
h− ĥ

)′
Σ̂−
(
h− ĥ

)
,

where Σ̂− denotes the Moore-Penrose inverse of Σ̂. 10 Computing Wn is straightforward
as it corresponds to a quadratic programming problem.

To derive the asymptotic distribution of Wn, we cannot apply directly the results of
[14] 11 and must introduce additional notations. Let (h10, h20) = h0 = h(p1, p0.) denote the
true parameter. The asymptotic distribution of Wn depends on whether the components
(h20i)1≤i≤I are equal to zero or not. Let Rj be equal to R+ if h20j = 0, and to R otherwise.
Then let

H(h0) = 0J ×R1 × ...×RI .

We show in the proof of Proposition 3.2 below that

lim
n→∞

Pr(Wn ≥ w) = P

(
min

h∈H(h0)
(h− U)′Σ− (h− U) ≥ w

)
(3.1)

where U ∼ N (0,Σ). To compute the level of the test based on this asymptotic distribution,
we thus need to estimate H(h0). Following [20], we consider a sequence (cn)n∈N such that

9. Indeed, the existence of b ∈ R+I such that P ′1b = p0. is equivalent to the fact that the least square
solution (P1P

′
1)−1P1p0. to minb∈RI

∥∥P1b− p0.

∥∥ satisfies the equation exactly and belongs to R+I .

10. Σ̂ is not full rank in general, because the rank of Σ11 is J − I, while h1(p) ∈ RJ . This is logical,
since we only have J − I overidentifying equality constraints here.

11. Technically, [14] compute suph∈H0Σ
limn→∞, whereH0Σ is the subset ofH0 such that the asymptotic

variance of ĥ is equal to Σ. For their results to apply, H0Σ should be a convex cone. Unfortunately, Σ
depends on the true parameter h0 ∈ H0 here, making this latter condition fail even though H0 is a convex
cone.
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cn →∞ and cn/
√
n→ 0. We let R̂j be equal to R+ if ĥ2j ≤ cn/

√
n, and to R otherwise,

and
Ĥ(h0) = 0J × R̂1 × ...× R̂I .

Finally, let ĉα satisfy

P

(
min

h∈Ĥ(h0)

(
h− Û

)′
Σ̂−
(
h− Û

)
≥ ĉα

)
= α,

where Û ∼ N (0, Σ̂). ĉα (or, similarly, the p-value of the test) can be obtained by simula-
tions.

Proposition 3.2. The test defined by the critical region {Wn > ĉα} has asymptotic level
α and is consistent.

Following the analysis of [14], it is also possible to express this asymptotic distribution
as a mixture of chi-square. The corresponding weights, however, do not have a closed form
in general, so that it is actually easier to approximate the asymptotic distribution using
(3.1) rather than their expression. 12 We use such simulations to compute our p-values in
the application below.

3.2 The continuous case

The situation is more involved when (Y, Z) is continuous, because we are not in a
parametric setting anymore. We first obtain a necessary and sufficient condition for root-
n estimability and provide the efficiency in this case. These results are closely related to
those of [23]. We then develop a root-n consistent estimator of β0.

3.2.1 Semi-parametric efficiency bounds

The first issue is to determine if β0 can be estimated at a root-n rate, and if so, to
compute the asymptotic efficiency bound. In the estimation of linear functionals depending
on a nonparametric regression with an endogenous regressor (see [23]), root-n estimability
is related to conditions on two dual operators. Let T ∗ denote the operator defined by :

T ∗ : L2(Z|D = 1) → L2(Y |D = 1)
q 7→ (y 7→ E(q(Z)|D = 1, Y = y)) .

.

This notation stems from the fact that T ∗ is the adjoint of T (defined on L2(Y |D = 1))
if one uses the scalar products associated with L2(Z|D = 1) and L2(Y |D = 1). Actually,
we only need considering the restriction T ∗Y0(q) of T ∗(q) on Y0 = Supp(Y |D = 0). By
Assumptions 2.2 and 2.3, E(q(Z)|D = 1, Y ) = E(q(Z)|D = 0, Y ) P Y |D=0 almost surely.
This allows us to extend T ∗Y0(q) on L2(Z|D = 0). By a slight abuse of notation, this
extension is also denoted T ∗Y0 . Finally, let βY0 denote the restriction of β(.) on Y0. The
condition for root-n estimability is the following.

Assumption 3.2. (i) g ∈ L2(Y, Z)
(ii) There exists q ∈ L2(Z|D = 0) such that T ∗Y0(q) = βY0(.) and

E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
<∞.

12. It is also possible to derive lower and upper bounds on the critical values of this test, see, e.g., [14].
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The first condition is standard to derive the asymptotic of 1
n

∑n
i=1 g(Yi, Zi) even in

case of perfect observability of Y . The second condition is similar to the one considered
by [23]. Indeed, if the standard completeness condition holds, then Ker (T ) = {0}, so
that Ker (T ) = {0} and R (T ∗) = L2(Y |D = 1), where R (T ∗) denotes the range of
T ∗. As a consequence if g ∈ L2(Y, Z), then β(.) lies in R (T ∗) and βY0(.) lies in R (T ∗)Y0 .
However, when Y is continuous,R (T ∗) is not closed in general, so that even if the standard
completeness holds, it may happen that βY0(.) 6∈ R (T ∗)Y0 . When βY0(.) ∈ R (T ∗)Y0 on the
other hand, Theorem 3.3 shows that β0 is root-n estimable, and provide the corresponding
asymptotic efficiency bound.

Théorème 3.3. Suppose that Assumptions 2.1-2.3(i) hold, and β(.) ∈ (Ker (T ) ∩ F)⊥.
Then a regular root-n estimator of β0 exists only if Assumption 3.2 holds, and in this case
the semiparametric efficiency bound V ∗ satisfies

V ∗ = V (g(Y, Z))+ min
q(.)∈L2(Z|D=0)∩T ∗−1

Y0
({βY0 (.)})

E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
.

The second part of the theorem shows that asymptotic efficiency bound comprises
two terms. The first corresponds to the standard estimation of β0 without any attrition,
i.e. when D = 1. The second accounts for attrition, and is indeed, loosely speaking,
increasing with P (Y ). It is also related to the approximation of g(Y, Z) by a function
of Z (among elements of T ∗−1Y0 ({βY0(.)})) . Intuitively, if g(Y, Z) ≡ g(Z), then q(.) =
g(.) ∈ T ∗−1Y0 ({βY0(.)}), so that the second term is zero. In this case, the sample average∑n

i=1 g(Zi)/n is asymptotically efficient.

4 Application

4.1 Introduction

In this section, we apply the previous results to estimate transitions on employment
status in the French labor market. Beyond the unemployment rate, measuring such tran-
sitions is important to assess, for instance, the importance of short and long-term unem-
ployment. We use for that purpose the Labor Force Survey (LFS) conducted by the French
national institute of statistics (INSEE). This survey is probably the best tool to measure
such transitions in France. Indeed, and compared to administrative data or other surveys,
it properly measures unemployment with respect to the standard ILO definition, has a
comprehensive coverage of the population and its sample size is large. Since 2003, it is
a rotating panel where approximately 5,900 new households are surveyed each quarter.
These new households are then questioned the five following quarters. On the first and
sixth wave, interrogations are face to face, while on the others they are conducted by
telephone. It has been argued that the use of phone may introduce specific measurement
errors (see, e.g., [3]), so we focus on the first and last interrogations hereafter. We also
restrict ourselves to people between 15 and 65 and pool together all labor force surveys
on the period 2003-2005.
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Table 1 – Summary statistics on the French LFS (first waves during 2003-2005).

Statistics All Men Women

Main sample :
Number of individuals 107,031 52,245 54,786
Attrition rate on last waves 21.78% 22.26% 21.31%
Participation rate on first waves 68.17% 73.91% 62.69%
(Uncorrected) participation rate on last waves 67.38% 72.75% 62.32%
Unemployment rate on first waves 9.68% 9.05% 10.39%
(Uncorrected) unemployment rate on last waves 8.02% 7.22% 8.90%
Refreshment sample for last waves :
Number of observations 109,404 53,337 56,067
Participation rate on the refreshment sample 67.92% 73.31% 62.78%
Unemployment rate on the refreshment sample 9.97% 9.43% 10.57%

Table 1 provides some summary statistics on our dataset, which emphasize that attri-
tion may be problematic in the LFS survey. This is especially striking when we compare
the (uncorrected) participation and unemployment rate on last waves and the one on
the refreshment sample (i.e., entrants at the same time). We observe differences around
1.5 percent points on participation rates, and around 2 percent points on unemployment
rates.To understand these differences, recall that in the French LFS, moving households
are not followed by interviewers, who stick instead on housings which were selected in
the first waves. This is likely to affect activity rates and transition estimates on the labor
market, because transitions are very different for moving and non-moving households.

As suggested in Section 2, we propose to correct for potentially endogenous attrition
by using past employment status, measured by a retrospective question asked on the first
waves. The underlying assumption is that attrition depends on the current transition
on this outcome, but not on previous ones. This assumption is plausible if most of the
endogeneity in attrition stems from the moving of households. The instrument Z we use
is employment status 6 months before the first wave. We choose to divide this variable in
three categories (unemployed, employed, and out of labour force) as our outcome which is
contemporary employment status. To assess the strength of our instrument we implement
rank test between Y2 and Z conditionally to Y . We also test our instrument following the
approach developed in Proposition 3.2.We also assess the plausibility of our instrument
by comparing the corrected participation and unemployment rates we obtain on last
waves with the one on the refreshment sample. Finally, as a matter of comparison, we
also correct for attrition under ignorability or using the method of [12] with a logistic
cumulative distribution for the link function.

4.2 The results

We first check the rank condition between Z1 and Y2 conditional on gender and Y1,
relying on the determinant test proposed in Subsection 3.1. Results are displayed in Table
2. The p-value of the rank test associated to any state Y1 are always smaller than 10%
for both men and women. We also implement the test developed in the Proposition 3.2.
Though some inequality constraints are binding in our estimates, we do not reject the
independence assumption Z ⊥⊥ D|Y1, Y2 here (see Table 3).
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Table 2 – Rank test between Z and Y2 conditional on gender and Y1.

P-value P-value
(Men) (Women)

Y1 = Empl. 0.0047 0.0031
Y1 = Unempl. 0.0695 0.0539
Y1 = Out L.F. 0.0498 0.0867

Table 3 – Test of Z ⊥⊥ D|Y1, Y2 by gender.

P-value P-value
(Men) (Women)

Y1 = Empl. 0.7430 0.8818
Y1 = Unempl. 0.5724 0.5418
Y1 = Out L.F. 0.7186 0.7088

Second, we estimate the probabilities of attrition (or non-attrition) conditional on
(Y1, Y2). Our results, displayed in Table 4, confirm that (under the validity of our instru-
ment), attrition is related to transitions on employment status. People who remain stable
on the labor market have always a significant larger probability to respond in the second
wave than people who change. In particular, we observe a large attrition for those who
move from employment to unemployment or inactivity whereas attrition seems negligible
for those who remain unemployed at both periods. As suggested above, such transitions
are likely to be related to house movings. For instance, transitions from inactivity to em-
ployment or unemployment mostly correspond to students who enter the labor market
and move at the same time. Such features cannot be captured under the missing at ran-
dom (MAR) scheme D ⊥⊥ Y2|Y1, or the additive model of [12]. In particular, they tend
to underestimate the probability of attrition for people whose status change on the labor
market, and to overestimate them for stable trajectories (see Table ?? in appendix for
tests on the difference between our IV models and the two others).
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Table 4 – P̂ (D = 1|Y1, Y2) for women under various assumption

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 84.33

(0.85)
34.33
(3.92)

46.31
(7.04)

85.72
(0.92)

46.45
(6.42)

44.57
(4.46)

Y1 = Unempl. 55.56
(4.33)

100.00
(3.91)

51.01
(9.27)

52.46
(4.25)

100.00
(2.06)

76.38
(13.43)

Y1 = Out L.F. 54.83
(11.35)

55.85
(11.35)

85.72
(1.99)

56.43
(11.16)

67.10
(16.77)

84.34
(1.10)

MAR
Y1 = Empl. 78.22

(0.22)
78.22
(0.22)

78.22
(0.22)

79.00
(0.24)

79.00
(0.24)

79.00
(0.24)

Y1 = Unempl. 65.90
(0.79)

65.90
(0.79)

65.90
(0.79)

69.77
(0.77)

69.77
(0.77)

69.77
(0.77)

Y1 = Out L.F. 79.52
(0.34)

79.52
(0.34)

79.52
(0.34)

79.77
(0.28)

79.77
(0.28)

79.77
(0.28)

HIRR
Y1 = Empl. 79.01

(0.28)
59.98
(2.07)

76.44
(2.25)

79.57
(0.32)

66.59
(2.21)

77.57
(2.02)

Y1 = Unempl. 75.84
(1.43)

55.55
(1.24)

73.01
(2.04)

76.04
(1.46)

61.89
(1.40)

73.81
(1.77)

Y1 = Out L.F. 82.41
(1.69)

65.09
(2.33)

80.15
(0.47)

82.01
(1.67)

69.99
(2.07)

80.18
(0.39)

Note : Standard error in brackets computed with 1000 bootstrap samples.

Before presenting our results on transitions, we estimate the distribution of Y2 with
our IV method and compare it with the one of the refreshment sample. We also estimate
this distribution supposing that data are missing at random (MAR), i.e. D ⊥⊥ Y2|Y1.
Table 5 shows that on the five statistics related to the distribution of Y2, our estimator is
close, and not statistically significant at usual levels, to the one based on the refreshment
sample. Those based on the MAR assumptions, on the other hand, do differ significantly
for several features of Y2. In other words, we can reject, using the refreshment sample,
the hypothesis that attrition only depends on past outcomes, while our independence
condition is not rejected in the data. Note that we cannot use the refreshment sample to
properly compare our method with the one of [12] because by construction, their estimator
exactly matches the distribution of Y2 on the refreshment sample.
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Table 5 – Comparison of the methods with the refreshment sample

Men Women
REF. MAR IV REF. MAR IV

P (Y2 = Empl.) 66.40 67.47
(<0.0001)

64.59
(0.0545)

56.15 56.81
(0.0055)

55.07
(0.2718)

P (Y2 = Unempl.) 6.92 5.62
(<0.0001)

7.53
(0.2851)

6.63 5.78
(<0.0001)

6.51
(0.8529)

P (Y2 = Out L.F.) 26.69 26.92
(0.2825)

27.88
(0.2033)

37.22 37.40
(0.4300)

38.42
(0.1373)

Participation rate 73.31 73.08
(0.2825)

72.12
(0.2033)

62.78 62.60
(0.4300)

61.58
(0.1373)

Unemployment rate 9.43 7.68
(<0.0001)

10.44
(0.1884)

10.57 9.24
(<0.0001)

10.58
(0.9913)

Note : we indicate the p-values of the difference with the refreshment
sample under parentheses. Computation based on 1000 bootstrap
samples.

Finally, we compute transitions on the labor market using our IV method, the MAR
assumption and the additive method of [12] (see Table 6). Not surprisingly given the
discrepancies on the probabilities of attrition, our results differ significantly from those
obtained by the other methods (see Table ?? for the tests of differences). Other methods
tend in particular to overestimate stability on the labor market. If it is impossible to
discriminate between our IV method and the one of [12] without extra information on
these transitions, some patterns on unemployment seem to support our model over theirs
in this application. In particular, the estimated probability of staying unemployed after 15
months are respectively equal to 25% with our IV method and around 44% with the one
of [12] (41% for women and 47% for the men). These latter figures seem particularly high,
compared to the rate we observe between the first wave and 11 months before, namely
44,9% for women and 49.6% for men. It is also notably at odds with the ? ?% rate of long
term (i.e., one year or more) unemployment directly observed on the LFS.
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Table 6 – Estimated probability of transitions for women under various assumption

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 85.86

(0.85)
6.12
(0.70)

8.02
(1.13)

83.46
(0.89)

4.73
(0.63)

11.81
(1.15)

Y1 = Unempl. 49.00
(3.71)

25.85
(1.46)

25.15
(3.74)

52.61
(3.92)

25.30
(0.95)

22.08
(3.91)

Y1 = Out L.F. 13.81
(2.63)

6.47
(1.16)

79.72
(1.84)

12.74
(2.12)

5.92
(1.41)

81.34
(1.05)

MAR
Y1 = Empl. 92.56

(0.16)
2.69
(0.10)

4.75
(0.13)

90.56
(0.19)

2.78
(0.11)

6.66
(0.16)

Y1 = Unempl. 41.31
(1.06)

39.23
(1.01)

19.46
(0.82)

39.56
(0.98)

36.27
(0.95)

24.18
(0.84)

Y1 = Out L.F. 9.52
(0.27)

4.55
(0.20)

85.93
(0.33)

9.02
(0.23)

4.98
(0.17)

86.00
(0.28)

HIRR
Y1 = Empl. 91.64

(0.20)
3.50
(0.12)

4.86
(0.15)

89.92
(0.23)

3.30
(0.12)

6.79
(0.18)

Y1 = Unempl. 35.90
(0.96)

46.54
(0.91)

17.57
(0.75)

36.29
(0.97)

40.87
(0.90)

22.85
(0.83)

Y1 = Out L.F. 9.19
(0.27)

5.56
(0.24)

85.26
(0.36)

8.77
(0.23)

5.68
(0.17)

85.55
(0.28)

Note : Standard error in brackets computed with 1000 bootstrap samples.

5 Conclusion

In this paper, we develop an alternative method to correct for endogenous attrition
in panel. We allow for both dependence on current and past outcomes and, thanks to
the availability of an instrument, do not need to impose functional restrictions on the
probability of attrition, contrary to [12]. The application suggests that our method may
do a good job for handling attrition processes which mostly depend on transitions.

The paper raises two challenging issues, related to our main conditional independence
assumption. The first is whether the refreshment sample could be used to weaken this
assumption, rather than to test for it. This may be useful in settings where this condition
is considered too stringent. The second is whether one can build bounds on parameters
of interest if the conditional independence assumption is replaced by weaker conditions
such as monotonicity ones. Although not considered here, these questions are clearly at
the top of our research agenda.
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