
MULTIPLY ROBUST IMPUTATION

PROCEDURES FOR THE TREATMENT OF

ITEM NONRESPONSE IN SURVEYS

Sixia Chen1(*), David Haziza2(**)

(*)WESTAT
(**) Université de Montréal

Résumé

La non-réponse partielle est fréquemment traitée au moyen d’une imputation. Dans cet
article, nous introduisons le concept multiple robustesse dans un contexte de popula-
tions finies. Ce concept est intimement lié à celui proposé par Han et Wang (2013).
Le concept de multiple robustesse peut être vu comme une généralisation de celui de
double robustesse. En pratique, on peut vouloir ajuster de multiples modèles de non-
réponse et de multiples modèles d’imputation, chacun comportant différents prédicteurs
et/ou différentes fonction de liens. Une procédure d’imputation est multiple robuste si
l’estimateur résultant est convergent si tous les modèles sauf un sont mal spécifiés. Des
estimateurs de variance possédant la propriété de multiple robustesse sont dévelopés. La
généralisation au cas de l’imputation aléatoire et l’imputation fractionnelle est également
discutée. Finalement, les résultats d’une étude par simulation, mesurant les propriétés
des estimateurs ponctuels et de variance, sont présentés.

Mots-clés : non-réponse partielle, imputation multiple robuste, estimation de la vari-
ance.
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Abstract

Item nonresponse in surveys is often treated through some form of imputation. In this pa-
per, we introduce the concept of multiply robust imputation procedures in the context of
finite population sampling, which is closely related to the concept of multiple robustness
proposed by Han and Wang (2013). Multiple robustness can be viewed as an extension of
the concept of double robustness. In practice, multiple nonresponse models and multiple
imputation models may be fitted, each involving different subsets of covariates and possi-
bly different link functions. An imputation procedure is said to be multiply robust if the
resulting estimator is consistent if all but one model are misspecified. A jackknife variance
estimator is proposed and shown to be consistent provided that the sampling fraction is
negligible. Multiply robust point and variance estimators are proposed even when the
sampling fraction is not negligible. Extensions to random and fractional imputations, as
well as estimation of distribution functions are discussed. Finally, the results of a simula-
tion study, assessing the performance of the proposed point and variance estimators are
presented.

Keywords: item nonresponse, multiply robust imputation, variance estimation.

1 Introduction

In surveys conducted by statistical agencies, item nonresponse is usually handled through
some form of imputation. Most often, a single imputation procedure is used, whereby a
missing value is replaced by a single imputed value. The latter is constructed using auxil-
iary information, which is a set of variables available for all the sample units (respondents
and nonrespondents). The reason for using imputation is two-fold: (i) to reduce the
nonresponse bias and (ii) to produce a complete rectangular data file, which allows the
secondary analysts to obtain point estimates using complete data estimation procedures.

In the presence of missing data, there are two different ways to adjust for the nonre-
sponse bias: (i) the nonresponse model approach, whereby one postulates a nonresponse
model, which is a set of assumptions about the unknown nonresponse mechanism. (ii) the
imputation model approach (also called the outcome regression approach) that requires
the specification of the model describing the distribution of the study variable. In the
last two decades, a number of procedures, called doubly robust (or doubly protected)
procedures, have been proposed in the literature; e.g., Robins et al. (1994); Scharfstein et
al. (1999); Tan (2006); Bang and Robins (2005); Kang and Schafer (2008); and Cao et al.
(2009). In the context of survey data, doubly robust procedures have been discussed in
Kott (1994), Kott (2006), Kim and Park (2006), Haziza and Rao (2006), Kott and Chang
(2010), Haziza et al. (2014), and Kim and Haziza (2014), among others. An estimator
is said to be doubly robust if it remains asymptotically unbiased and consistent if either
model (nonresponse or imputation) is true. Thus, doubly robust procedures offer some
protection if either the nonresponse model or the imputation model is misspecified. In
this paper, we refer to an imputation procedure resulting in a doubly robust imputed
estimator as a doubly robust imputation procedure. Double robustness is an attractive
property that is closely related with the philosophy of model-assisted inference in survey
sampling; see Särndal et al. (1992).
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Recently, Han and Wang (2013) introduced the concept of multiple robustness in an
infinite population set-up; see also Han (2014). Multiple robustness can be viewed as an
extension of the concept of double robustness. In practice, multiple nonresponse models
and multiple imputation models may be fitted, each involving different subsets of covari-
ates and possibly different link functions. An estimation procedure is said to be multiply
robust when it is consistent if any one of those multiple models, for either the response
probability or the study variable, is correctly specified. Multiply robust procedures are
attractive because they provide some protection if all but one model are misspecified. In
practice, survey statisticians do not always perform all the necessary diagnostics to en-
sure that the link function is correctly specified or that appropriate interaction/curvature
terms are included. In such cases, multiply robust procedures are attractive.

The paper is organized as follows. In Section 2, we present the basic theoretical set-up.
In Section 3, motivated by Han andWang (2013), we develop a multiply robust imputation
procedure in the context of finite population sampling. We establish asymptotic proper-
ties of the resulting multiply robust imputed estimator in Section 4. Section 5 presents
variance estimation for negligible sampling fractions. In Section 6, we propose multiply
robust point and variance estimation procedures for non-negligible sampling fractions.
Section 7 contains multiply robust random and fractional imputations. The results of a
simulation study, assessing the performance of the proposed point and variance estimators
are presented in Section 8. Section 9 concludes the article with some discussion.

2 Theoretical set-up

Consider a finite population U of size N . We are interested in estimating the population
total of a study variable y, Y =

∑
i∈U yi. We select a sample s, of size n, according to

a sampling design F (I), where I = (I1, . . . , IN)
⊤ and Ii is a sample selection indicator

associated with unit i such that Ii = 1 if unit i ∈ s and Ii = 0, otherwise.
In the absence of nonresponse, a complete data estimator of Y is the expansion esti-

mator given by

Ŷπ =
∑

i∈s

wiyi,

where wi = 1/πi denotes the design weight attached to unit i and πi denotes its inclu-
sion probability in the sample. The expansion estimator is design-unbiased and design-
consistent for Y (e.g., Isaki and Fuller, 1982).

In the presence of nonresponse to the study variable y, an estimator of Y

ŶI =
∑

i∈s

wiriyi +
∑

i∈s

wi(1− ri)y
∗

i , (1)

where y∗i denotes the imputed value used to replace the missing value yi and ri is a response
indicator attached to unit i, such that ri = 1 if unit i is a respondent to the study variable
y and ri = 0, otherwise. Note that ŶI is readily computed from an imputed data set with
n rows, each row corresponding to a given sample unit, a column consisting of the design
weights wi and a column consisting of the ỹ-values, where ỹi = riyi+(1−ri)y

∗
i . Throughout

the paper, we assume that the MAR assumption (Rubin, 1976) holds:

Pr(ri = 1|xi, yi) = Pr(ri = 1|xi) ≡ pi.
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The imputed values y∗i are constructed on the basis of auxiliary information collected for
both the respondents and the nonrespondents. Let xi be a q-vector of auxiliary variables
associated with unit i. We assume that the first component of xi is 1 for all i. In order
to construct the imputed values y∗i , we postulate the following imputation model:

yi = m(xi;β) + ǫi, (2)

where β is a q vector of unknown coefficients. We assume that Em(ǫi) = 0, Em(ǫiǫj) =
0, i 6= j and V (ǫi) = σ2, where the subscript m refers to the imputation model (2).

Let sr denote the set of respondents to the study variable y, of size nr and sm = s−sr
denote the set of nonrespondents of size nm such that s = sr

⋃
sm and n = nr + nm.

Deterministic imputation consists of replacing the missing value yi by the imputed value
y∗i given by

y∗i = m(xi; β̂), i ∈ sm

where β̂ is a solution of the estimating equation

∑

i∈s

φiri {yi −m (xi;β)}
∂m(xi;β)

∂β
= 0 (3)

and φi in (3) is a coefficient attached to unit i. Regardless of the choice of φi, the imputed
estimator (1) is consistent for Y if the imputation model (2) holds. The choice φi = wi

leads to survey weighted deterministic imputation, whereas the choice φi = 1 leads to
unweighted deterministic imputation. However, with these choices of φ, the imputed
estimator (1) is generally biased if the imputation model (2) is misspecified. To cope with
this problem, an alternative choice of φi can be obtained by postulating a nonresponse
model:

pi = p(xi;α), (4)

where α is a q-vector of unknown coefficients. Let p̂i = p(xi; α̂) be an estimate of the
response probability for unit i, where α̂ is a solution of the estimating equation

∑

i∈s

wi
ri − p(xi;α)

p(xi;α) {1− p(xi;α)}
= 0.

The choice φi = wip̂
−1
i − 1 ensures that the imputed estimator (1) is consistent for Y

provided that the nonresponse model (4) is correctly specified, regardless of whether of
not the imputation model (2) is correctly specified. Hence, with the choice φi = wip̂

−1
i −1,

the resulting imputed estimator, denoted by ŶDR, is doubly robust; see, for example,
Haziza and Rao (2006). As mentioned in Section 1, instead of fitting a single nonresponse
model and a single imputation model, one may want to fit multiple nonresponse models
and multiple imputation models. This is discussed in the next section.

3 The proposed method

In this section, we develop a multiply robust imputation procedure in the case of survey
data. Let C1 = {pj(xi;α

j); j = 1, . . . , J} denote the set consisting of J nonresponse
models and C2 = {mk(xi;β

k); k = 1, . . . , K} be the set consisting ofK imputation models.
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The corresponding estimators α̂
j and β̂

k
are obtained by solving the following survey

weighted estimating equations:

Sj
1(α

j) =
∑

i∈s

wi
ri − pj(xi;α

j)

pj(xi;αj) {1− pj(xi;αj)}
= 0 (5)

and

Sk
2 (β

k) =
∑

i∈s

wiri
{
yi −mk(xi;β

k)
} ∂mk(xi;β

k)

∂β
= 0, (6)

respectively.

Our imputation procedure consists of two distinct steps: (i) In the first step, we obtain
calibrated weights w̃i as close as possible tothe initial weights wi such that the following
J +K + 1 calibration constraints are satisfied:

∑

i∈sr

w̃i =
∑

i∈s

wi, (7)

∑
i∈sr

w̃iL
{
1/pj(xi; α̂

j)
}

∑
i∈sr

w̃i
=

∑
i∈swiL

{
1/pj(xi; α̂

j)
}

∑
i∈swi

≡ L̂j, j = 1, . . . , J, (8)

and ∑
i∈sr

w̃im
k(xi; β̂

k
)∑

i∈sr
w̃i

=

∑
i∈s wim

k(xi; β̂
k
)∑

i∈s wi
≡ m̂k, k = 1, . . . , K, (9)

where L(t) is the inverse function of F (t), which is a calibration function defined below.
The calibration constraints (7)-(9) are similar to those encountered in the context of model
calibration for complete data (Wu and Sitter, 2001). More specifically, we seek calibrated
weights w̃i such that ∑

i∈sr

G(w̃i/wi)

is minimized subject to (7)-(9), where G(w̃i/wi) is such that G(w̃i/wi) ≥ 0, G(1) = 0,
differentiable with respect to w̃i, strictly convex, with continuous derivatives g(w̃i/wi) =
∂G(w̃i/wi)/∂w̃i such that g(1) = 0; see Deville and Särndal (1992). Popular distance func-
tions include (i) the generalized chi-square distance G(w̃i/wi) = 1/2 {(w̃i/wi)− 1}2wi; (ii)
the pseudo-empirical likelihood distance G(w̃i/wi) = −wi log(w̃i/wi) + w̃i − wi and (iii)
the Kullback-Leibler distance G(w̃i/wi) = w̃i log(w̃i/wi) − w̃i + wi. The weights w̃i are
given by

w̃i = wiF (λ̂
⊤

r hi)

with wF (.) denoting the inverse function of g(.), λ̂
⊤

r is a J +K + 1-vector of estimated
coefficients and

hi =
(
1, L̂1

i − L̂1, . . . , L̂J
i − L̂J , m̂1

i − m̂1, . . . , m̂K
i − m̂K

)⊤
, (10)

where L̂j
i ≡ L

{
1/pj(xi; α̂

j)
}
and m̂k

i ≡ mk(xi; β̂
k
). The function F (.) is often referred

to as the calibration function. In the case of the generalized chi-square distance, L̂j
i =

1/pj(xi; α̂
j) and the weights w̃i reduce to

w̃i = wi(1 + λ̂
⊤

r hi), (11)
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where

λ̂r =

(
∑

i∈sr

wihih
⊤

i

)−1(∑

i∈s

wihi −
∑

i∈sr

wihi

)
.

With the generalized chi-square distance, some weights w̃i in (11) may be negative. Both
the pseudo-empirical likelihood distance and the Kullback-Leibler distance ensures that

w̃i > 0 for all i. For short, we write F̂i for F (λ̂
⊤

r hi) in the sequel.

(ii) In the second step, the imputed values y∗i are obtained by by fitting a weighted
linear regression with y as the dependent variable, h given by (10) as the vector of inde-

pendent variables and wi(F̂i − 1) as the weights. This leads to

y∗i = h⊤

i γ̂p, i ∈ sm, (12)

where

γ̂p =

{
∑

i∈s

riwi

(
F̂i − 1

)
hih

⊤

i

}−1{∑

i∈s

riwi

(
F̂i − 1

)
hiyi

}
. (13)

The vector of estimated coefficients γ̂p can be viewed as a weighted least square estimator.

The resulting imputed estimator, denoted by ŶMR, is given by

ŶMR =
∑

i∈s

riwiyi +
∑

i∈s

(1− ri)wih
⊤

i γ̂p. (14)

Because the first component of the vector hi is equal to 1 for all i, the imputed estimator
(14) can alternatively be written as

ŶMR =
∑

i∈sr

wiF̂iyi +

(
∑

i∈s

wihi −
∑

i∈sr

wiF̂ihi

)⊤

γ̂p. (15)

The form (14) is often referred to as the projection form. In the next section, we show that

ŶMR is multiply robust. For this reason, the imputation procedure (12) will be referred
to as a multiply robust deterministic imputation procedure.

4 Asymptotic results

The following theorem establishes the consistency of ŶMR when one of the imputation
model is true or when the true model is a linear combination of the multiple imputation
models.

Theorem 1. If one of the imputation models is true or the true model is a linear com-
bination of the multiple imputation models, then the proposed estimator ŶMR in (14) is
consistent.

A sketch of the proof is presented in Appendix A. The following theorem establishes
the consistency of ŶMR when one of the nonresponse models is true.

Theorem 2. If one of the nonresponse model is true, then the proposed estimator ŶMR

in (14) is consistent.
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A sketch of the proof is presented in Appendix B. Combining Theorem 1 and Theorem
2, we conclude that ŶMR is multiply robust, in the sense that it is consistent if all but
one of the model are misspecified. Finally, the next theorem presents an asymptotic
expression of ŶMR.

Theorem 3. Under the regularity conditions (C1)-(C4) in Appendix C, the proposed
estimator (14) has the following expansion

ŶMR =
∑

i∈s

wiηi,0 +Op(Nn
−1),

where
ηi,0 = riFiyi + C1(1− riFi)hi,0 + C2S(xi; θ

∗),

with

C1 = 1 + E

(
∑

i∈s

wiriḞihi,0ei,0

){
E

(
∑

i∈s

wiriḞihi,0h
⊤

i,0

)}−1

and

C2 = E

{
1

N

(
∑

i∈s

wiriḞiλ
∗ḣi,0ei,0 −

∑

i∈s

wi(riFi − 1)riḣi,0

)}
,

where S(xi; θ
∗) is defined in Appendix C, hi,0 = h(xi; θ

∗), ḣi,0 = ḣ(xi; θ
∗), ḣ(xi; θ

∗) =
∂h(xi; θ)/∂θ evaluated at θ = θ∗, ei,0 = yi − γ∗⊤hi,0 and Ḟi = ∂F (t)/∂t evaluated at
t = λ∗hi,0.

The sketched proof of Theorem 3 is contained in Appendix C.

5 Variance estimation for negligible sampling frac-

tions

In this section, we propose a variance estimator for the multiply robust estimator ŶMR

given by (14). We assume that the sampling fraction n/N is negligible. The case of
non-negligible sampling fractions is discussed In Section 6. It is well known that treating
the imputed values as observed values leads to an underestimation of the variance of the
imputed estimators and ultimately to confidence intervals that are too narrow. In the case
of negligible sampling fractions, several variance estimation methods, taking nonresponse
and imputation into account, have been proposed in the literature including the adjusted
jackknife variance estimator of Rao and Shao (1992) and the bootstrap variance estimator
of Shao and Sitter (1996).

To motivate our variance estimation procedures, we use the reverse framework for
variance estimation, which reverses the actual of sampling and nonresponse (Fay, 1991;
Shao and Steel, 1999): instead of sampling the units first, we start by dividing the pop-
ulation U into a population of respondents Ur and a population of nonrespondents Um

according to the nonresponse mechanism and then select the sample s using the sampling
design. The reverse decomposition may be used when the sampling design is independent
of the non-response mechanism. This condition is similar to that of strong invariance in
the context of two-phase sampling designs (Beaumont and Haziza, 2015).
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In the case of deterministic imputation, the total variance of ŶMR may be decomposed
as

VT = V1 + V2, (16)

where
V1 = EVp

(
ŶMR − Y | yU ,xU , r

)

and
V2 = V Ep

(
ŶMR − Y | yU ,xU , r

)

with yU = (y1, . . . , yN)
⊤, xU = (x1, . . . , xN)

⊤ and r = (r1, . . . , rN)
⊤.

Under mild regularity conditions, the contribution of the term V2 to the total vari-
ance, V2/VT is O(n/N) (Shao and Steel, 1999). Thus, when the sampling fraction n/N
is negligible, the contribution of the term V2 to the total variance is negligible and may
be omitted. It remains to estimate the term V1 consistently, which requires obtaining

a consistent estimator of Vp

(
ŶMR − Y | yU ,xU , r

)
. Conditionally on yU , xU and r, the

estimator ŶMR is expressed as a smooth function of estimated totals. Thus, the problem

of estimating Vp

(
ŶMR − Y | yU ,xU , r

)
reduces to the classical problem of estimating the

sampling variance of a smooth function of estimated totals, conditionally on yU , xU and
r. Therefore, any complete data variance estimation procedure may be used, including
Taylor expansion procedures or resampling methods such as the jackknife, the random
group method or the bootstrap; e.g., Wolter (2007).

We start by a variance estimator based on a Taylor expansion procedure. According

to Theorem 3, the term Vp

(
ŶMR − Y | yU ,xU , r

)
can be estimated consistently by

V̂1 =
∑

i∈s

∑

j∈s

πij − πiπj
πij

η̂i
πi

η̂j
πj
, (17)

where
η̂i = riF̂iyi + Ĉ1(1− riF̂i)hi + Ĉ2S(xi; θ̂),

Ĉ1 = 1 +

(
∑

i∈s

wiri
̂̇F ihiêi

)(
∑

i∈s

wiri
̂̇F ihih

⊤

i

)−1

and

Ĉ2 =
1

N̂

{
∑

i∈s

wiri
̂̇F iλ̂rḣ(xi; θ̂)êi −

∑

i∈s

wi(riF̂i − 1)ri
̂̇
hi

}
,

with N̂ =
∑

i∈s wi, ḣi = ḣ(xi; θ̂), ḣ(xi; θ̂) = ∂h(xi; θ)/∂θ evaluated at θ = θ̂, êi =

yi − γ̂
⊤

p hi and
̂̇F i = ∂F (t)/∂t evaluated at t = λ̂rhi.

Alternatively, to estimate the term Vp

(
ŶMR − Y | yU ,xU , r

)
, we consider a jackknife

variance estimator that does not require adjusting the imputed values, unlike the Rao-
Shao jackknife variance estimator. We illustrate the method in the case of the multiply
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robust estimator given by (14) and simple random sampling without replacement. Let
wi(j) be the so-called jackknife weights given by

wi(j) =

{
n

n−1
wi if i 6= j

0 if i = j.

As an estimator of Vp

(
ŶMR − Y | yU ,xU , r

)
, we consider the jackknife variance estimator

V̂J =
n− 1

n

∑

i∈s

(ŶMR(j) − ŶMR)
2, (18)

where

ŶMR(j) =
∑

i∈s

wi(j)riyi +
∑

i∈s

wi(j)(1− ri)h
⊤

i(j)γ̂p(j)

with γ̂p(j) computed the same way as γ̂p in (13) but with the jackknife weights wi(j) in-
stead of the original weights wi and with hi replaced by hi(j). Note that obtaining hi(j)

involves fitting the J nonresponse models and the K imputation models after deletion of
unit j.

When the sampling fraction n/N is negligible, both variance estimators V̂1 and V̂J in

(17) and (18), respectively, are consistent estimators of Vp

(
ŶMR − Y | yU ,xU , r

)
, which

implies that they are consistent for V1 in (16). It is worth noting that the consistency
property holds even if all the nonresponse models and all the imputation models are mis-
specified. Since the proposed variance estimator does not depend on the validity of the
assumed models, it is also multiply robust. For unequal probability sampling designs,
jackknife variance estimation can be performed through the use the complete data jack-
knife variance estimator of Berger (2007), provided that the sampling design belongs to
the class of high entropy sampling designs that includes Conditional Poisson sampling
(CPS) and the Rao-Sampford method as special cases.

Finally, a (1− α%) confidence interval for Y is

ŶMR ± zα/2

√
V̂ , (19)

where zα/2 denotes the upper (1−α)/2 critical value for the standard normal distribution

and V̂ denotes either (17) or (18). The confidence interval (19) is multiply robust in the
sense that its coverage probability is close to the nominal rate if all but one model are
misspecified and the sampling fraction n/N is negligible.

6 Point and variance estimation for non-negligible

sampling fractions

In Section 3, we introduced a multiply robust estimator, ŶMR, based on estimated coeffi-

cients α̂j , j = 1, . . . , J and β̂
k
, k = 1, . . . , K that were obtained by solving the weighted

score equations (5) and (6), respectively. In Section 5, the variance estimator based on
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a Taylor expansion procedure involved relatively messy calculations, which can be ex-
plained by the fact that it accounted for the variability associated with the α̂

j’s and the

β̂
k
’s. For this reason, we considered a jackknife variance estimator that did not involve

cumbersome derivation, but was highly computer intensive. In this section, we modify the
procedure for estimating the αj’s and the βk’s so that, at the variance estimation stage,
we can safely ignore the variability associated with the estimation of these parameters.
As a result, obtaining a variance estimator based on Taylor expansion procedures involves
much simpler derivations.

Let θ̂ = (α̂1, . . . , α̂J , β̂
1
, . . . , β̂

K
) denote the J + K vector of estimated coefficients.

According to (B.2) in the proof of Theorem 3, we have

ŶMR

(
θ̂, λ̂r

)
= Ŷπ +

∑

i∈s

wi (riFi − 1) ei,0 +
∑

i∈s

wiriḞihi,0ei,0

(
λ̂r − λ∗

)

+

{
∑

i∈s

wiriḞiλ
∗ḣi,0ei,0 −

∑

i∈s

wi (riFi − 1)γ∗ḣi,0

}(
θ̂ − θ∗

)

+ Op

(
n−1N

)
,

If the following conditions
∑

i∈s

wiriḞiḣi,0ei,0 = op(1),
∑

i∈s

wi (riFi − 1) ḣi,0 = op(1), (20)

and ∑

i∈s

wiriḞihi,0ei,0 = op(1), (21)

are satisfied, it follows that

ŶMR = Ŷπ +
∑

i∈s

wi (riFi − 1) ei,0 + op
(
n−1/2N

)
(22)

and the variability of θ̂ can be safely ignored.

In order to achieve (20) and (21), consider the following iterative procedures:

(Step1). Obtain the initial estimates θ̂
(0)

by solving the weighted score equations (5) and (6).

(Step2). Use θ̂
(t−1)

to calculate λ̂
(t−1)

r by minimizing proposed distance function subject to
constraints (7)-(9).

(Step3). Calculate θ̂
(t)

by using the generalized method of moment (GMM) method which
minimizes the distance G(θ)DG⊤(θ) with

G(θ) = (A1(θ), A2(θ), A3(θ)) ,

where

A1(θ) =
∑

i∈s

wiriḞ
(t−1)
i ḣi(yi − γ̂

(t−1)
p hi), A2(θ) =

∑

i∈s

wi

(
riF

(t−1)
i − 1

)
ḣi,

A3(θ) =
∑

i∈s

wiriḞ
(t−1)
i hi(yi − γ̂

(t−1)
p hi),

and D is any positive definite matrix.
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(Step4). Repeat (Step2) and (Step3) by using the updated estimates until convergence.

Turning to variance estimation, the total variance of ŶMR with respect to the nonre-
sponse model (NM) approach can be expressed as

V NM
T = V NM

1 + V NM
2 ,

where
V NM
1 = E

{
V
(
ŶMR | yU ,xU , r

)
| yU ,xU

}

and
V NM
2 = V

{
E
(
ŶMR | yU ,xU , r

)
| yU ,xU

}
.

Under the imputation model (IM) approach, the total variance of ŶMR can be written as

V IM
T = V IM

1 + V IM
2 ,

where
V IM
1 = E

{
V
(
ŶMR − Y | yU ,xU , r

)
| xU , r

}

and
V IM
2 = V

{
E
(
ŶMR − Y | yU ,xU , r

)
| xU , r

}
.

According to (22), we can estimate V NM
1 and V IM

1 using any complete data variance
estimation procedure such as resampling method or Taylor linearization procedures. Using
a first-order Taylor expansion, an asymptotically unbiased variance estimator of either
V NM
1 or V IM

1 is given by

V̂1 =
∑

i∈s

∑

j∈s

(πij − πiπj)

πij

η̂i
πi

η̂j
πj
,

where η̂i = riF
(
λ̂

⊤

r hi

)
yi+ÂpB̂

−1
p

{
1− riF

(
λ̂

⊤

r hi

)}
hi, with Âp =

∑
i∈sr

wi

{
F
(
λ̂

⊤

r hi

)
− 1
}
yihi

and B̂p =
∑

i∈sr
wi

{
F
(
λ̂

⊤

r hi

)
− 1
}
hih

⊤
i . The estimator V̂1 is multiply robust as its va-

lidity does not depend on the validity of the assumed nonresponse or imputation models.

Now, an estimator V NM
2 is given by

V̂2 =
∑

i∈s

wiriF
(
λ̂

⊤

r hi

){
F
(
λ̂

⊤

r hi

)
− 1
}
ê2i ,

where êi = yi−ÂpB̂
−1
p hi. The estimator V̂2 is consistent if all but one nonresponse models

are misspecified. However, it is biased with respect to the imputation model. In fact, it
can be shown that the bias of V̂2 with respect to the true imputation model is given by

B(V̂2) = E(V̂2)− V IM
2

=
∑

i∈U

(
rip

−1
i − 1

)
V (yi|xi).

Following Kim and Haziza (2014), we propose the following bias-corrected multiply robust

variance estimator of the variance of ŶMR:

V̂T = V̂1 + V̂2 − B̂(V̂2),

11



where
B̂(V̂2) =

∑

i∈s

wi

{
riF

(
λ̂
⊤

r hi

)
− 1
}
V̂ (yi|xi)

and V̂ (yi|xi) is a multiply robust estimator of V (yi|xi). If one of the nonresponse models

is correctly specified, then E
{
B̂(V̂2)

}
≈ 0 as F

(
λ̂

⊤

r hi

)
≈ p−1

i . To obtain a multiply

robust estimator of V (yi|xi), suppose that, for each of the K imputation models we have
V (yi | xi) = ψ(xi; δ

k
0) k = 1, . . . , K for some δk

0. Suppose that a consistent estimator

δ̂ is available. Then, one can perform the estimation process similar to that described
in Section 3, with y2i as the dependent variable to obtain a multiply robust estimator

Ê(y2i |xi) of E(y
2
i |xi) first, and estimate V (yi|xi) by using V̂ (yi|xi) = Ê(y2i |xi)− (h⊤

i γ̂p)
2.

7 Multiply robust random and fractional imputation

In this section, we consider two random counterparts of the multiply robust imputation
procedure (12): (i) multiply robust random imputation and (ii) multiply robust fractional
imputation.

7.1 Random imputation

First, we consider a random imputation procedure that consists of replacing the missing
yi by

y∗ij = h⊤

i γ̂p + e∗j , (23)

where e∗j = yj − h⊤
j γ̂p, j ∈ sr, is selected at random from the set of residuals observed

among the responding units with probability

w∗

ij =
wj(F̂j − 1)

∑
k∈s rkwk(F̂k − 1)

.

The resulting imputed estimator obtained by using (23) in (1) is denoted by ŶMRR. The
latter is multiply robust as E

(
e∗j | yU ,xU , I, r

)
= 0. Its variance can be expressed as

V (ŶMRR) = V (ŶMR) + E
{
V
(
ŶMRR − ŶMR | yU ,xU , I, r

)}
, (24)

where the first term on the right hand-side of (24) denotes the variance of ŶMR under
the multiply robust deterministic imputation procedure (12), whereas the second term
denotes the imputation variance arising from the random selection of the residuals e∗j .

Therefore, a multiply robust variance estimator of V (ŶRI) is given by

V̂ (ŶMRR) = V̂ (ŶMR) + V̂
(
ŶMRR − ŶMR | yU ,xU , I, r

)
,

where V̂ (ŶMR) is an estimator of the variance of ŶMR under the multiply robust deter-
ministic imputation procedure (12) (see Sections 5 and 6) and

V̂
(
ŶMRR − ŶMR | yU ,xU , I, r

)
=
∑

i∈s

w2
i (1− ri)

∑

j∈sr

w∗

ij

(
y∗ij −

∑

j∈sr

w∗

ijy
∗

ij

)2

.

12



7.2 Fractional imputation

We now turn to fractional imputation that was considered in Kim and Fuller (2004) and
Fuller and Kim (2005). The imputed estimator (1) under fractional imputation can be
written as

ŶMRF =
∑

i∈s

wiriyi +
∑

i∈s

wi(1− ri)
∑

j∈sr

w∗

ijy
∗

ij, (25)

where y∗ij is given by (23) and w∗
ij denotes the fraction of the original weight of recipient

i assigned to the value from donor j. We have w∗
jj = 1 and

∑
j∈sr

w∗
ij = 1. It follows that

the estimator (25) can be rewritten as

ŶMRF =
∑

i∈s

wih
⊤

i γ̂p +
∑

i∈s

ri

{
wi +

∑

j∈s

(1− rj)wjw
∗

ij

}
e∗i . (26)

Comparing (26) with (15), we have

wi +
∑

j∈s

(1− rj)wjw
∗

ij = wiF̂i. (27)

Because
∑

j∈s(1 − rj)wj =
∑

j∈s rjwj(F̂j − 1), the fractional weights satisfying (27) are
given by

w∗

ij =
wi(F̂i − 1)

∑
i∈s riwi(F̂i − 1)

. (28)

Using the fractional weights (28) ensures that the imputation variance is eliminated. The

estimator ŶMRF is then said to be fully efficient, a term coined by Kim and Fuller (2004).
Its asymptotic properties are thus identical to those of (14). As a result, the estimator

ŶMRF is multiply robust.

8 Simulation study

We performed a simulation study to assess the performance of the multiply robust esti-
mator ŶMR in terms of bias and efficiency. In addition, we assessed the performance of
the proposed jackknife variance estimator presented in Section 5 in terms of relative bias
and coverage probability.

8.1 Monte Carlo properties of point estimators

We generated B = 2, 000 finite populations of size N = 10, 000, each one consisting of
three variables: two auxiliary variables x and z and a study variable y. First, the x-values
were generated independently from a uniform distribution with parameters −2.5 and 2.5.
The z-values were generated according to zi = 0.5χi + 1, where χi was generated from a
chi-square distribution with one degree of freedom. Given the x-values, the y-values were
generated according to

yi = m(xi) + ǫi, i = 1, . . . , N,

where the errors ǫi were generated from a normal distribution with mean equal to 0 and
variance equal to 4x2+2. We used two choices for m(x): (i) (IM1). m(x) = 1+2x+3x2;
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and (ii) (IM2). m(x) = 1 + 2x+ 3 exp(x).

In each population, samples of expected size n = 300 were selected according to Pois-
son sampling with inclusion probability proportional-to-size. That is, πi = 300zi/

∑
i∈U zi.

In each sample, nonresponse to the study variable y was generated according to two
distinct nonresponse mechanisms. More specifically, the response indicators ri were gen-
erated independently from a Bernoulli distribution with probability pi, where pi was
assigned as follows: (i) (NM1) pi = {1 + exp(0.8 + 0.5xi − 0.3x2i )}

−1
; and (NM2) pi =

1− exp [− exp {0.5 + 0.5xi − 0.3 exp(xi)}] . The overall response rate was set to 0.5.

This led to four types of scenarios: in the first one (NM1-IM1), the true imputation
model is given by IM1 and nonresponse was generated according NM1. In the second
(NM2-IM1), the true imputation model is given by IM1 and nonresponse was generated
according NM2. In the third (NM1-IM2), the true imputation model is given by IM2 and
nonresponse was generated according NM2. Finally, in the fourth (NM2-IM2), the true
imputation model is given by IM2 and nonresponse was generated according NM2.

We were interested in estimating the finite population mean, Y = N−1
∑

i∈U yi. We

computed 3 estimators of Y :

1. The complete data estimator (COM): Ŷ COM =
∑

i∈swiyi/
∑

i∈s wi, which assumes
no missing values.

2. Four doubly robust estimators (DR) of the form Ŷ DR = ŶDR/
∑

i∈s wi, where ŶDR

is described in Section 2: Ŷ DR(1010), Ŷ DR(1001), Ŷ DR(0110) and Ŷ DR(0101). The
four digits between parentheses indicate which models are used in the estimation.
The first two digits correspond to the nonresponse models NM1 and NM2, respec-
tively, whereas the last two digits correspond to the imputation models IM1 and

IM2, respectively. For example, the estimator Ŷ DR(1010) corresponds to the doubly

robust estimator Ŷ DR, for which the imputed values (3) were obtained by fitting
the nonresponse model NM1 and the imputation model IM1.

3. Five multiply robust estimators of the form Ŷ MR = ŶMR/
∑

i∈swi based on the chi-

squared distance function, where ŶMR is given by (14): Ŷ MR(1110), Ŷ MR(1101), Ŷ MR(1011), Ŷ MR(0111)

and Ŷ MR(1111). Once again, the four digits between parentheses indicate which
models were used in the construction of the imputed values (12). For example,

the estimator Ŷ MR(1111) denotes the multiply robust estimator based on the four
models NM1, NM2, IM1 and IM2.

As a measure of bias of an estimator θ̂ of a parameter θ, we computed the Monte
Carlo bias given by

BMC(θ̂) = EMC(θ̂)− θ,

where EMC(θ̂) = R−1
∑R

r=1 θ̂(r) with θ̂(r) denoting the estimator θ̂ in the r-th iteration.

As a measure of efficiency, we computed the Monte Carlo standard error (SE) of θ̂:

SEMC(θ̂) =

[
1

R

R∑

r=1

{
θ̂(r) −EMC(θ̂)

}2
]1/2

.
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Finally, we computed the Monte Carlo root mean square error (RMSE) of θ̂:

RMSEMC(θ̂) =

{
1

R

R∑

r=1

(
θ̂(r) − θ

)2
}1/2

.

Table 1 shows the Monte Carlo bias, the standard deviation and the root mean squared
error of ten estimators.

From Table 1, we note that the complete data estimator Ŷ COM showed negligible
bias in all the scenarios, as expected. Its efficiency was greater than that of all the

other estimators, which is not surprising as Ŷ COM does not suffer from variability due
to nonresponse. Turning to the doubly robust estimators, their bias was small when
either the nonresponse model or the imputation was correctly specified. For example,
in the scenario (NM1-IM1) all the doubly robust estimators having either the first digit
or the third digit equal to 1 showed negligible bias, as expected. However, when both

models were specified incorrectly (e.g., Ŷ DR(0101)) the relative bias was large, with a
value equal to 0.1582. In terms of efficiency, all the doubly robust estimators showed very
similar performances in all the scenarios. Finally, the multiply robust estimators showed
negligible bias in all the scenarios. In terms of efficiency, they performed as well as the
doubly robust estimators, illustrating that the multiply robust estimators do not seem to
suffer from instability.

8.2 Monte Carlo properties of variance estimators

We also assessed the performance of the proposed jackknife variance estimator (see Sec-
tion 5) in terms of relative bias, coverage probability of normal confidence intervals, and
average length of the confidence interval. For simplicity, we confine our discussion to the
case of the first scenario, (NM1-IM1).

As a measure of bias of V̂J , we used the Monte Carlo percent relative bias

RBMC(V̂J) = 100×
EMC(V̂J)− VMC(Ŷ MR)

VMC(Ŷ MR)
,

where EMC(V̂J) = R−1
∑R

r=1 V̂J(r) and V̂J(r) denotes the estimator V̂J in the r-th sample
and

VMC(Ŷ MR) =
1

R

R∑

r=1

{
Ŷ MR − EMC(Ŷ MR)

}2

.

Finally, we computed the coverage probability of 95% normal confidence intervals. That
is, in the r-th sample, we computed the confidence interval

Ŷ MR(r) ± 1.96

√
V̂J(r).

The Monte Carlo coverage probability was defined as the proportion of the confidence
intervals covering the true total Y among the 2, 000 selected samples. The Monte Carlo

average length of confidence interval was defined as the average of the length L = 2

√
V̂J(r)
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Table 1: Bias, Standard error (SE) and Root mean squared error (RMSE) of different
estimators under four model setups.

Estimators Bias SE RMSE Bias SE RMSE

Scenario: (NM1-IM1) Scenario:(NM1-IM2)

Ŷ COM -0.0026 0.4347 0.4348 0.0022 0.7540 0.7540

Ŷ DR(1010) 0.0027 0.4960 0.4960 -0.0057 0.8044 0.8044

Ŷ DR(1001) 0.0165 0.5158 0.5161 0.0074 0.7946 0.7946

Ŷ DR(0110) 0.0042 0.5016 0.5016 -0.1150 0.8025 0.8107

Ŷ DR(0101) 0.1582 0.5293 0.5525 0.0089 0.7995 0.7995

Ŷ MR(1110) 0.0032 0.4963 0.4963 -0.0002 0.7973 0.7973

Ŷ MR(1101) 0.0147 0.5028 0.5030 0.0072 0.7948 0.7948

Ŷ MR(1011) 0.0025 0.4966 0.4966 0.0073 0.7948 0.7948

Ŷ MR(0111) 0.0032 0.4977 0.4978 0.0079 0.7955 0.7955

Ŷ MR(1111) 0.0026 0.4967 0.4967 0.0073 0.7945 0.7945
Scenario: (NM2-IM1) Scenario: (NM2-IM2)

Ŷ COM -0.0026 0.4347 0.4348 0.0022 0.7540 0.7540

Ŷ DR(1010) -0.0128 0.4959 0.4961 -0.1998 0.7981 0.8228

Ŷ DR(1001) 0.1990 0.5196 0.5564 -0.0079 0.7958 0.7959

Ŷ DR(0110) -0.0155 0.5054 0.5057 -0.0109 0.8152 0.8153

Ŷ DR(0101) -0.0155 0.5337 0.5339 -0.0106 0.8034 0.8035

Ŷ MR(1110) -0.0141 0.5091 0.5093 0.0318 0.8114 0.8121

Ŷ MR(1101) -0.0833 0.5550 0.5613 -0.0100 0.8048 0.8049

Ŷ MR(1011) -0.0145 0.5021 0.5023 -0.0098 0.7998 0.7999

Ŷ MR(0111) -0.0136 0.5075 0.5077 -0.0104 0.8027 0.8027

Ŷ MR(1111) -0.0140 0.5167 0.5169 -0.0099 0.8113 0.8114

across the selected samples.

The results are presented in Table 2. We note that the variance estimator V̂J performed
very well in terms of relative bias in all the scenarios, with absolute relative bias smaller
than 2.2%. Also, the Monte Carlo coverage rates ranging from 93.8% to 94.3% were all
close to the nominal values. The results suggest that the proposed confidence interval is
multiply robust in the sense that the coverage probability is close to the nominal rate if
all but one model are misspecified.

9 Concluding remarks

In this paper, we have extended the concept of multiply robustness of Han and Wang
(2013) to survey sampling setups. More specifically, we proposed a novel determinist and
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Table 2: Coverage rate (CR), Average length (AL) and Relative bias (RB) of variance
estimators of different estimators under the scenario (NM1-IM1).

Estimators CR AL RB

(NM1-IM1)

Ŷ MR(1110) 93.8% 1.912 -1.35%

Ŷ MR(1101) 94.3% 1.954 0.55%

Ŷ MR(1011) 94.0% 1.906 -2.11%

Ŷ MR(0111) 94.1% 1.920 -1.05%

Ŷ MR(1111) 94.3% 1.918 -0.73%

random imputation procedures in the context of complex survey data. In an empirical
study, the proposed methods performed well in terms of bias and efficiency. We have
also proposed multiply robust variance estimators that performed well in terms of bias
and coverage probability. Our methods are easy to implement in practice and have an
advantage in terms of protection compared to existing imputation procedures.

In this paper, we focussed on the estimation of a population total. Multiply robust
procedures for estimating finite population distribution functions and quantiles are cur-
rently under investigation. Topics of interest that will be investigated in the future include
the use of multiply robust procedures for the treatment of undercoverage errors, which
is an important topic in statistical agencies. Finally, in the context of classical statis-
tics, it would be of interest to develop multiply robust versions of multiple imputation
procedures.
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Appendix

A: Proof of Theorem 1

Assume m(xi;β) = a0 +
∑K

k=1 akm
k(xi;β

k), then we have γ̂p →
p γ∗

p, where

γ∗

p = (a∗0, 0, . . . , 0, a1, a2, . . . , aK),

with a∗0 = a0 +
∑K

k=1E
{
mk(x;βk)

}
. Therefore,

ŶMR/Y =

{
∑

i∈s

riwiyi +
∑

i∈s

(1− ri)wih
⊤

i γ̂p

}
/Y

→p

{
∑

i∈s

riwiyi +
∑

i∈s

(1− ri)wim(xi;β)

}
/Y

→p 1,

as N → ∞.

B: Proof of Theorem 2

Without loss of generality, we assume the model p1(xi;α
1) is correctly specified. Because

the solution of minimizing the distance function subject to constraints (7)-(9) is unique,
then we have γ̂p →

p γ∗
p, where

λ∗

r = (λ∗

0, 1, 0, . . . , 0),

where λ∗

0 = E [L {1/p1(xi;α
1)}] . Then we have

F (λ̂
⊤

r hi) = F
{
λ̂0 + λ̂1(L̂

1
i − L̂1) + . . .+ λ̂J+K(m

K
i − m̂K)

}

→p F
{
F−1(1/p1i )

}

= 1/p1i .

Hence,

ŶMR/Y =




∑

i∈sr

wiF̂iyi +

(
∑

i∈s

wihi −
∑

i∈sr

wiF̂ihi

)⊤

γ̂p



 /Y

→p




∑

i∈sr

wi/p
1
i yi +

(
∑

i∈s

wihi −
∑

i∈sr

wi/p
1
ihi

)⊤

γ̂p



 /Y

→p 1.

C: Proof of Theorem 3

We first assume the following regularity conditions:
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(C1). Assume (θ∗,λ∗,γ∗) are the unique probability limits of (θ̂, λ̂r, γ̂p) and θ̂ has the
following influence function:

θ̂ − θ∗ =
1

N

∑

i∈s

wiS(xi; θ
∗) + op(n

−1/2),

where

θ∗ = (α1∗, . . . ,αJ∗,β1∗, . . . ,βK∗), θ̂ = (α̂1, . . . , α̂J , β̂
1
, . . . , β̂

K
).

(C2). Assume F (t) is the calibration function defined in Section 3 and it has continuous
first derivative. We also assume h(x; θ) has continuous first derivative with respect
to θ.

(C3). Assume the following moments are bounded: E(Y 2), E(F 2), E(h2), E(S2), E(Ḟ )
and E(ḣ).

(C4). Assume the true response probability 0 < a < p(x;α) < 1 almost surely.

Define
U(λ̂r) =

∑

i∈sr

wiF (λ̂
⊤

r hi)hi −
∑

i∈s

wihi,

then by using Taylor linearization and conditions (C1) and (C2), it can be shown that

λ̂
⊤

r − λ∗ = −

{
E

(
∂U

∂λ̂r

)}−1

U(λ∗) + op(n
−1/2). (B.1)

By using Taylor linearization, condition (C1) and (B.1) and because
∑

i∈swi

(
riF̂i − 1

)
h⊤
i =

0, we have

ŶMR

(
θ̂, λ̂r

)
= Ŷπ +

∑

i∈s

wi

(
riF̂i − 1

)
h⊤

i

(
γ∗ − γ̂p

)
+
∑

i∈s

wi

(
riF̂i − 1

)
êi

= Ŷπ +
∑

i∈s

wi

(
riF̂i − 1

)
êi

= Ŷπ +
∑

i∈s

wi (riFi − 1) ei,0 +
∑

i∈s

wiriḞihi,0ei,0

(
λ̂r − λ∗

)

+

{
∑

i∈s

wiriḞiλ
∗ḣi,0ei,0 −

∑

i∈s

wi (riFi − 1)γ∗ḣi,0

}(
θ̂ − θ∗

)

+ Op

(
n−1N

)

=
∑

i∈s

wiηi,0 +Op

(
n−1N

)
, (B.2)

where Ŷπ =
∑

i∈s wiyi and ηi,0 is defined in Theorem 3.
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